Learn more

Refine search


Results (14 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
200.2-a8 200.2-a \(\Q(\sqrt{-1}) \) \( 2^{3} \cdot 5^{2} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $2.996888981$ 0.749222245 \( \frac{132304644}{5} \) \( \bigl[i + 1\) , \( i\) , \( i + 1\) , \( -i + 26\) , \( 66 i\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(-i+26\right){x}+66i$
2000.2-a8 2000.2-a \(\Q(\sqrt{-1}) \) \( 2^{4} \cdot 5^{3} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.340249496$ 1.340249496 \( \frac{132304644}{5} \) \( \bigl[i + 1\) , \( i\) , \( 0\) , \( -107 i - 81\) , \( -626 i - 53\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+\left(-107i-81\right){x}-626i-53$
2000.3-a8 2000.3-a \(\Q(\sqrt{-1}) \) \( 2^{4} \cdot 5^{3} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.340249496$ 1.340249496 \( \frac{132304644}{5} \) \( \bigl[i + 1\) , \( i\) , \( 0\) , \( 107 i - 81\) , \( -626 i + 53\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+\left(107i-81\right){x}-626i+53$
5000.3-a8 5000.3-a \(\Q(\sqrt{-1}) \) \( 2^{3} \cdot 5^{4} \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $0.933393502$ $0.599377796$ 2.237821363 \( \frac{132304644}{5} \) \( \bigl[i + 1\) , \( i\) , \( i + 1\) , \( -i + 668\) , \( 6990 i\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(-i+668\right){x}+6990i$
6400.2-a8 6400.2-a \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.722205338$ $1.498444490$ 2.164369220 \( \frac{132304644}{5} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 107\) , \( -426 i\bigr] \) ${y}^2={x}^{3}+107{x}-426i$
16200.2-a8 16200.2-a \(\Q(\sqrt{-1}) \) \( 2^{3} \cdot 3^{4} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.683761292$ $0.998962993$ 2.732208912 \( \frac{132304644}{5} \) \( \bigl[i + 1\) , \( i\) , \( 0\) , \( 240\) , \( 1558 i\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+240{x}+1558i$
25600.2-j8 25600.2-j \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.059560260$ 2.119120521 \( \frac{132304644}{5} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 214 i\) , \( 852 i + 852\bigr] \) ${y}^2={x}^{3}+214i{x}+852i+852$
25600.2-p8 25600.2-p \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.059560260$ 2.119120521 \( \frac{132304644}{5} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -214 i\) , \( -852 i + 852\bigr] \) ${y}^2={x}^{3}-214i{x}-852i+852$
32000.2-l8 32000.2-l \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 5^{3} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.670124748$ 2.680498993 \( \frac{132304644}{5} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -428 i - 321\) , \( 4686 i + 852\bigr] \) ${y}^2={x}^{3}+\left(-428i-321\right){x}+4686i+852$
32000.3-l8 32000.3-l \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 5^{3} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.670124748$ 2.680498993 \( \frac{132304644}{5} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 428 i - 321\) , \( -4686 i + 852\bigr] \) ${y}^2={x}^{3}+\left(428i-321\right){x}-4686i+852$
57800.4-e8 57800.4-e \(\Q(\sqrt{-1}) \) \( 2^{3} \cdot 5^{2} \cdot 17^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.726852342$ 2.907409369 \( \frac{132304644}{5} \) \( \bigl[i + 1\) , \( i\) , \( 0\) , \( -214 i - 402\) , \( 2302 i + 2876\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+\left(-214i-402\right){x}+2302i+2876$
57800.6-d8 57800.6-d \(\Q(\sqrt{-1}) \) \( 2^{3} \cdot 5^{2} \cdot 17^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.726852342$ 2.907409369 \( \frac{132304644}{5} \) \( \bigl[i + 1\) , \( i\) , \( 0\) , \( 214 i - 402\) , \( 2302 i - 2876\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+\left(214i-402\right){x}+2302i-2876$
67600.4-d8 67600.4-d \(\Q(\sqrt{-1}) \) \( 2^{4} \cdot 5^{2} \cdot 13^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.258491824$ $0.831187453$ 3.754460134 \( \frac{132304644}{5} \) \( \bigl[i + 1\) , \( i\) , \( 0\) , \( -321 i + 133\) , \( 546 i - 2289\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+\left(-321i+133\right){x}+546i-2289$
67600.6-f8 67600.6-f \(\Q(\sqrt{-1}) \) \( 2^{4} \cdot 5^{2} \cdot 13^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.258491824$ $0.831187453$ 3.754460134 \( \frac{132304644}{5} \) \( \bigl[i + 1\) , \( i\) , \( i + 1\) , \( 320 i + 133\) , \( -413 i - 2610\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(320i+133\right){x}-413i-2610$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.