sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(648, base_ring=CyclotomicField(54))
M = H._module
chi = DirichletCharacter(H, M([27,27,35]))
pari:[g,chi] = znchar(Mod(635,648))
| Modulus: | \(648\) | |
| Conductor: | \(648\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(54\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{648}(11,\cdot)\)
\(\chi_{648}(59,\cdot)\)
\(\chi_{648}(83,\cdot)\)
\(\chi_{648}(131,\cdot)\)
\(\chi_{648}(155,\cdot)\)
\(\chi_{648}(203,\cdot)\)
\(\chi_{648}(227,\cdot)\)
\(\chi_{648}(275,\cdot)\)
\(\chi_{648}(299,\cdot)\)
\(\chi_{648}(347,\cdot)\)
\(\chi_{648}(371,\cdot)\)
\(\chi_{648}(419,\cdot)\)
\(\chi_{648}(443,\cdot)\)
\(\chi_{648}(491,\cdot)\)
\(\chi_{648}(515,\cdot)\)
\(\chi_{648}(563,\cdot)\)
\(\chi_{648}(587,\cdot)\)
\(\chi_{648}(635,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((487,325,569)\) → \((-1,-1,e\left(\frac{35}{54}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) |
| \( \chi_{ 648 }(635, a) \) |
\(1\) | \(1\) | \(e\left(\frac{11}{27}\right)\) | \(e\left(\frac{47}{54}\right)\) | \(e\left(\frac{23}{54}\right)\) | \(e\left(\frac{37}{54}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{17}{27}\right)\) | \(e\left(\frac{22}{27}\right)\) | \(e\left(\frac{13}{27}\right)\) | \(e\left(\frac{25}{54}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)