Normalized defining polynomial
\( x^{18} - x^{9} + 1 \)
Invariants
Degree: | $18$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 9]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(-2954312706550833698643\) \(\medspace = -\,3^{45}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(15.59\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $3^{5/2}\approx 15.588457268119896$ | ||
Ramified primes: | \(3\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{-3}) \) | ||
$\card{ \Gal(K/\Q) }$: | $18$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is Galois and abelian over $\Q$. | |||
Conductor: | \(27=3^{3}\) | ||
Dirichlet character group: | $\lbrace$$\chi_{27}(1,·)$, $\chi_{27}(2,·)$, $\chi_{27}(4,·)$, $\chi_{27}(5,·)$, $\chi_{27}(7,·)$, $\chi_{27}(8,·)$, $\chi_{27}(10,·)$, $\chi_{27}(11,·)$, $\chi_{27}(13,·)$, $\chi_{27}(14,·)$, $\chi_{27}(16,·)$, $\chi_{27}(17,·)$, $\chi_{27}(19,·)$, $\chi_{27}(20,·)$, $\chi_{27}(22,·)$, $\chi_{27}(23,·)$, $\chi_{27}(25,·)$, $\chi_{27}(26,·)$$\rbrace$ | ||
This is a CM field. | |||
Reflex fields: | unavailable$^{256}$ |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$
Monogenic: | Yes | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Relative class number: $1$
Unit group
Rank: | $8$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( a \) (order $54$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $a^{13}+a$, $a^{15}-a^{9}+1$, $a^{14}+a^{9}-a^{5}$, $a^{13}+a^{9}$, $a^{8}-a^{7}$, $a^{16}+a^{9}-a^{7}$, $a^{4}+a^{2}$, $a^{10}+a^{9}-a$ | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 40934.0329443 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{9}\cdot 40934.0329443 \cdot 1}{54\cdot\sqrt{2954312706550833698643}}\cr\approx \mathstrut & 0.212853776024 \end{aligned}\]
Galois group
A cyclic group of order 18 |
The 18 conjugacy class representatives for $C_{18}$ |
Character table for $C_{18}$ |
Intermediate fields
\(\Q(\sqrt{-3}) \), \(\Q(\zeta_{9})^+\), \(\Q(\zeta_{9})\), \(\Q(\zeta_{27})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | $18$ | R | $18$ | ${\href{/padicField/7.9.0.1}{9} }^{2}$ | $18$ | ${\href{/padicField/13.9.0.1}{9} }^{2}$ | ${\href{/padicField/17.6.0.1}{6} }^{3}$ | ${\href{/padicField/19.3.0.1}{3} }^{6}$ | $18$ | $18$ | ${\href{/padicField/31.9.0.1}{9} }^{2}$ | ${\href{/padicField/37.3.0.1}{3} }^{6}$ | $18$ | ${\href{/padicField/43.9.0.1}{9} }^{2}$ | $18$ | ${\href{/padicField/53.2.0.1}{2} }^{9}$ | $18$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(3\) | Deg $18$ | $18$ | $1$ | $45$ |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
* | 1.3.2t1.a.a | $1$ | $ 3 $ | \(\Q(\sqrt{-3}) \) | $C_2$ (as 2T1) | $1$ | $-1$ |
* | 1.27.9t1.a.a | $1$ | $ 3^{3}$ | \(\Q(\zeta_{27})^+\) | $C_9$ (as 9T1) | $0$ | $1$ |
* | 1.27.18t1.a.a | $1$ | $ 3^{3}$ | \(\Q(\zeta_{27})\) | $C_{18}$ (as 18T1) | $0$ | $-1$ |
* | 1.27.9t1.a.b | $1$ | $ 3^{3}$ | \(\Q(\zeta_{27})^+\) | $C_9$ (as 9T1) | $0$ | $1$ |
* | 1.27.18t1.a.b | $1$ | $ 3^{3}$ | \(\Q(\zeta_{27})\) | $C_{18}$ (as 18T1) | $0$ | $-1$ |
* | 1.9.3t1.a.a | $1$ | $ 3^{2}$ | \(\Q(\zeta_{9})^+\) | $C_3$ (as 3T1) | $0$ | $1$ |
* | 1.9.6t1.a.a | $1$ | $ 3^{2}$ | \(\Q(\zeta_{9})\) | $C_6$ (as 6T1) | $0$ | $-1$ |
* | 1.27.9t1.a.c | $1$ | $ 3^{3}$ | \(\Q(\zeta_{27})^+\) | $C_9$ (as 9T1) | $0$ | $1$ |
* | 1.27.18t1.a.c | $1$ | $ 3^{3}$ | \(\Q(\zeta_{27})\) | $C_{18}$ (as 18T1) | $0$ | $-1$ |
* | 1.27.9t1.a.d | $1$ | $ 3^{3}$ | \(\Q(\zeta_{27})^+\) | $C_9$ (as 9T1) | $0$ | $1$ |
* | 1.27.18t1.a.d | $1$ | $ 3^{3}$ | \(\Q(\zeta_{27})\) | $C_{18}$ (as 18T1) | $0$ | $-1$ |
* | 1.9.3t1.a.b | $1$ | $ 3^{2}$ | \(\Q(\zeta_{9})^+\) | $C_3$ (as 3T1) | $0$ | $1$ |
* | 1.9.6t1.a.b | $1$ | $ 3^{2}$ | \(\Q(\zeta_{9})\) | $C_6$ (as 6T1) | $0$ | $-1$ |
* | 1.27.9t1.a.e | $1$ | $ 3^{3}$ | \(\Q(\zeta_{27})^+\) | $C_9$ (as 9T1) | $0$ | $1$ |
* | 1.27.18t1.a.e | $1$ | $ 3^{3}$ | \(\Q(\zeta_{27})\) | $C_{18}$ (as 18T1) | $0$ | $-1$ |
* | 1.27.9t1.a.f | $1$ | $ 3^{3}$ | \(\Q(\zeta_{27})^+\) | $C_9$ (as 9T1) | $0$ | $1$ |
* | 1.27.18t1.a.f | $1$ | $ 3^{3}$ | \(\Q(\zeta_{27})\) | $C_{18}$ (as 18T1) | $0$ | $-1$ |