from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(37, base_ring=CyclotomicField(36))
M = H._module
chi = DirichletCharacter(H, M([35]))
pari: [g,chi] = znchar(Mod(19,37))
Basic properties
Modulus: | \(37\) | |
Conductor: | \(37\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(36\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | odd | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 37.i
\(\chi_{37}(2,\cdot)\) \(\chi_{37}(5,\cdot)\) \(\chi_{37}(13,\cdot)\) \(\chi_{37}(15,\cdot)\) \(\chi_{37}(17,\cdot)\) \(\chi_{37}(18,\cdot)\) \(\chi_{37}(19,\cdot)\) \(\chi_{37}(20,\cdot)\) \(\chi_{37}(22,\cdot)\) \(\chi_{37}(24,\cdot)\) \(\chi_{37}(32,\cdot)\) \(\chi_{37}(35,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{36})\) |
Fixed field: | Number field defined by a degree 36 polynomial |
Values on generators
\(2\) → \(e\left(\frac{35}{36}\right)\)
First values
\(a\) | \(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(11\) |
\( \chi_{ 37 }(19, a) \) | \(-1\) | \(1\) | \(e\left(\frac{35}{36}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{13}{36}\right)\) | \(i\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) |
sage: chi.jacobi_sum(n)
Gauss sum
sage: chi.gauss_sum(a)
pari: znchargauss(g,chi,a)
Jacobi sum
sage: chi.jacobi_sum(n)
Kloosterman sum
sage: chi.kloosterman_sum(a,b)