Properties

Label 37.i
Modulus $37$
Conductor $37$
Order $36$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Learn more

Show commands: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(37, base_ring=CyclotomicField(36))
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([1]))
 
sage: chi.galois_orbit()
 
pari: [g,chi] = znchar(Mod(2,37))
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(37\)
Conductor: \(37\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(36\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{36})\)
Fixed field: \(\Q(\zeta_{37})\)

Characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(3\) \(4\) \(5\) \(6\) \(7\) \(8\) \(9\) \(10\) \(11\)
\(\chi_{37}(2,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{23}{36}\right)\) \(-i\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{37}(5,\cdot)\) \(-1\) \(1\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{25}{36}\right)\) \(i\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\)
\(\chi_{37}(13,\cdot)\) \(-1\) \(1\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{1}{36}\right)\) \(i\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\)
\(\chi_{37}(15,\cdot)\) \(-1\) \(1\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{11}{36}\right)\) \(-i\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{37}(17,\cdot)\) \(-1\) \(1\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{17}{36}\right)\) \(i\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{37}(18,\cdot)\) \(-1\) \(1\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{31}{36}\right)\) \(-i\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\)
\(\chi_{37}(19,\cdot)\) \(-1\) \(1\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{13}{36}\right)\) \(i\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\)
\(\chi_{37}(20,\cdot)\) \(-1\) \(1\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{35}{36}\right)\) \(-i\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{37}(22,\cdot)\) \(-1\) \(1\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{29}{36}\right)\) \(i\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{37}(24,\cdot)\) \(-1\) \(1\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{19}{36}\right)\) \(-i\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\)
\(\chi_{37}(32,\cdot)\) \(-1\) \(1\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{7}{36}\right)\) \(-i\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\)
\(\chi_{37}(35,\cdot)\) \(-1\) \(1\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{5}{36}\right)\) \(i\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{6}\right)\)