Normalized defining polynomial
\( x^{12} - x^{6} + 1 \)
Invariants
Degree: | $12$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 6]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(1586874322944\) \(\medspace = 2^{12}\cdot 3^{18}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(10.39\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2\cdot 3^{3/2}\approx 10.392304845413264$ | ||
Ramified primes: | \(2\), \(3\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q\) | ||
$\card{ \Gal(K/\Q) }$: | $12$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is Galois and abelian over $\Q$. | |||
Conductor: | \(36=2^{2}\cdot 3^{2}\) | ||
Dirichlet character group: | $\lbrace$$\chi_{36}(1,·)$, $\chi_{36}(35,·)$, $\chi_{36}(5,·)$, $\chi_{36}(7,·)$, $\chi_{36}(11,·)$, $\chi_{36}(13,·)$, $\chi_{36}(17,·)$, $\chi_{36}(19,·)$, $\chi_{36}(23,·)$, $\chi_{36}(25,·)$, $\chi_{36}(29,·)$, $\chi_{36}(31,·)$$\rbrace$ | ||
This is a CM field. | |||
Reflex fields: | \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-1}) \), \(\Q(\zeta_{9})\)$^{3}$, 6.0.419904.1$^{3}$, \(\Q(\zeta_{36})\)$^{24}$ |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$
Monogenic: | Yes | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Relative class number: $1$
Unit group
Rank: | $5$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( a \) (order $36$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $a^{4}+1$, $a^{4}-a^{2}$, $a^{3}+1$, $a-1$, $a^{11}-a^{10}+a^{4}$ | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 162.837701397 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{6}\cdot 162.837701397 \cdot 1}{36\cdot\sqrt{1586874322944}}\cr\approx \mathstrut & 0.220932906611 \end{aligned}\]
Galois group
$C_2\times C_6$ (as 12T2):
An abelian group of order 12 |
The 12 conjugacy class representatives for $C_6\times C_2$ |
Character table for $C_6\times C_2$ |
Intermediate fields
\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{3}) \), \(\Q(\zeta_{9})^+\), \(\Q(\zeta_{12})\), 6.0.419904.1, \(\Q(\zeta_{9})\), \(\Q(\zeta_{36})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | ${\href{/padicField/5.6.0.1}{6} }^{2}$ | ${\href{/padicField/7.6.0.1}{6} }^{2}$ | ${\href{/padicField/11.6.0.1}{6} }^{2}$ | ${\href{/padicField/13.3.0.1}{3} }^{4}$ | ${\href{/padicField/17.2.0.1}{2} }^{6}$ | ${\href{/padicField/19.2.0.1}{2} }^{6}$ | ${\href{/padicField/23.6.0.1}{6} }^{2}$ | ${\href{/padicField/29.6.0.1}{6} }^{2}$ | ${\href{/padicField/31.6.0.1}{6} }^{2}$ | ${\href{/padicField/37.1.0.1}{1} }^{12}$ | ${\href{/padicField/41.6.0.1}{6} }^{2}$ | ${\href{/padicField/43.6.0.1}{6} }^{2}$ | ${\href{/padicField/47.6.0.1}{6} }^{2}$ | ${\href{/padicField/53.2.0.1}{2} }^{6}$ | ${\href{/padicField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | 2.12.12.26 | $x^{12} + 12 x^{11} + 98 x^{10} + 542 x^{9} + 2359 x^{8} + 7956 x^{7} + 21831 x^{6} + 47308 x^{5} + 82476 x^{4} + 109442 x^{3} + 112071 x^{2} + 76900 x + 33205$ | $2$ | $6$ | $12$ | $C_6\times C_2$ | $[2]^{6}$ |
\(3\) | 3.12.18.82 | $x^{12} + 24 x^{11} + 252 x^{10} + 1558 x^{9} + 6450 x^{8} + 19068 x^{7} + 41627 x^{6} + 68094 x^{5} + 83298 x^{4} + 74306 x^{3} + 45618 x^{2} + 17400 x + 3277$ | $6$ | $2$ | $18$ | $C_6\times C_2$ | $[2]_{2}^{2}$ |