sage: H = DirichletGroup(37)
pari: g = idealstar(,37,2)
Character group
sage: G.order()
pari: g.no
| ||
Order | = | 36 |
sage: H.invariants()
pari: g.cyc
| ||
Structure | = | \(C_{36}\) |
sage: H.gens()
pari: g.gen
| ||
Generators | = | $\chi_{37}(2,\cdot)$ |
First 32 of 36 characters
Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.
Character | Orbit | Order | Primitive | \(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(11\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{37}(1,\cdot)\) | 37.a | 1 | no | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) |
\(\chi_{37}(2,\cdot)\) | 37.i | 36 | yes | \(-1\) | \(1\) | \(e\left(\frac{1}{36}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{23}{36}\right)\) | \(-i\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) |
\(\chi_{37}(3,\cdot)\) | 37.h | 18 | yes | \(1\) | \(1\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(-1\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) |
\(\chi_{37}(4,\cdot)\) | 37.h | 18 | yes | \(1\) | \(1\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(-1\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) |
\(\chi_{37}(5,\cdot)\) | 37.i | 36 | yes | \(-1\) | \(1\) | \(e\left(\frac{23}{36}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{25}{36}\right)\) | \(i\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) |
\(\chi_{37}(6,\cdot)\) | 37.d | 4 | yes | \(-1\) | \(1\) | \(-i\) | \(-1\) | \(-1\) | \(i\) | \(i\) | \(1\) | \(i\) | \(1\) | \(1\) | \(-1\) |
\(\chi_{37}(7,\cdot)\) | 37.f | 9 | yes | \(1\) | \(1\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(1\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) |
\(\chi_{37}(8,\cdot)\) | 37.g | 12 | yes | \(-1\) | \(1\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(i\) | \(e\left(\frac{2}{3}\right)\) | \(i\) | \(e\left(\frac{1}{3}\right)\) | \(1\) | \(-1\) |
\(\chi_{37}(9,\cdot)\) | 37.f | 9 | yes | \(1\) | \(1\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(1\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) |
\(\chi_{37}(10,\cdot)\) | 37.c | 3 | yes | \(1\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(1\) | \(1\) |
\(\chi_{37}(11,\cdot)\) | 37.e | 6 | yes | \(1\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(-1\) | \(e\left(\frac{2}{3}\right)\) | \(-1\) | \(e\left(\frac{1}{3}\right)\) | \(1\) | \(1\) |
\(\chi_{37}(12,\cdot)\) | 37.f | 9 | yes | \(1\) | \(1\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(1\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) |
\(\chi_{37}(13,\cdot)\) | 37.i | 36 | yes | \(-1\) | \(1\) | \(e\left(\frac{11}{36}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{1}{36}\right)\) | \(i\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) |
\(\chi_{37}(14,\cdot)\) | 37.g | 12 | yes | \(-1\) | \(1\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(-i\) | \(e\left(\frac{1}{3}\right)\) | \(-i\) | \(e\left(\frac{2}{3}\right)\) | \(1\) | \(-1\) |
\(\chi_{37}(15,\cdot)\) | 37.i | 36 | yes | \(-1\) | \(1\) | \(e\left(\frac{13}{36}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{11}{36}\right)\) | \(-i\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) |
\(\chi_{37}(16,\cdot)\) | 37.f | 9 | yes | \(1\) | \(1\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(1\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) |
\(\chi_{37}(17,\cdot)\) | 37.i | 36 | yes | \(-1\) | \(1\) | \(e\left(\frac{7}{36}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{17}{36}\right)\) | \(i\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) |
\(\chi_{37}(18,\cdot)\) | 37.i | 36 | yes | \(-1\) | \(1\) | \(e\left(\frac{17}{36}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{31}{36}\right)\) | \(-i\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) |
\(\chi_{37}(19,\cdot)\) | 37.i | 36 | yes | \(-1\) | \(1\) | \(e\left(\frac{35}{36}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{13}{36}\right)\) | \(i\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) |
\(\chi_{37}(20,\cdot)\) | 37.i | 36 | yes | \(-1\) | \(1\) | \(e\left(\frac{25}{36}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{35}{36}\right)\) | \(-i\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) |
\(\chi_{37}(21,\cdot)\) | 37.h | 18 | yes | \(1\) | \(1\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(-1\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) |
\(\chi_{37}(22,\cdot)\) | 37.i | 36 | yes | \(-1\) | \(1\) | \(e\left(\frac{31}{36}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{29}{36}\right)\) | \(i\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) |
\(\chi_{37}(23,\cdot)\) | 37.g | 12 | yes | \(-1\) | \(1\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(i\) | \(e\left(\frac{1}{3}\right)\) | \(i\) | \(e\left(\frac{2}{3}\right)\) | \(1\) | \(-1\) |
\(\chi_{37}(24,\cdot)\) | 37.i | 36 | yes | \(-1\) | \(1\) | \(e\left(\frac{29}{36}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{19}{36}\right)\) | \(-i\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) |
\(\chi_{37}(25,\cdot)\) | 37.h | 18 | yes | \(1\) | \(1\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(-1\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) |
\(\chi_{37}(26,\cdot)\) | 37.c | 3 | yes | \(1\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(1\) | \(1\) |
\(\chi_{37}(27,\cdot)\) | 37.e | 6 | yes | \(1\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(-1\) | \(e\left(\frac{1}{3}\right)\) | \(-1\) | \(e\left(\frac{2}{3}\right)\) | \(1\) | \(1\) |
\(\chi_{37}(28,\cdot)\) | 37.h | 18 | yes | \(1\) | \(1\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(-1\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) |
\(\chi_{37}(29,\cdot)\) | 37.g | 12 | yes | \(-1\) | \(1\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(-i\) | \(e\left(\frac{2}{3}\right)\) | \(-i\) | \(e\left(\frac{1}{3}\right)\) | \(1\) | \(-1\) |
\(\chi_{37}(30,\cdot)\) | 37.h | 18 | yes | \(1\) | \(1\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(-1\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) |
\(\chi_{37}(31,\cdot)\) | 37.d | 4 | yes | \(-1\) | \(1\) | \(i\) | \(-1\) | \(-1\) | \(-i\) | \(-i\) | \(1\) | \(-i\) | \(1\) | \(1\) | \(-1\) |
\(\chi_{37}(32,\cdot)\) | 37.i | 36 | yes | \(-1\) | \(1\) | \(e\left(\frac{5}{36}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{7}{36}\right)\) | \(-i\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) |