Properties

Modulus $37$
Structure \(C_{36}\)
Order $36$

Learn more

Show commands: PariGP / SageMath

sage: H = DirichletGroup(37)
 
pari: g = idealstar(,37,2)
 

Character group

sage: G.order()
 
pari: g.no
 
Order = 36
sage: H.invariants()
 
pari: g.cyc
 
Structure = \(C_{36}\)
sage: H.gens()
 
pari: g.gen
 
Generators = $\chi_{37}(2,\cdot)$

First 32 of 36 characters

Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.

Character Orbit Order Primitive \(-1\) \(1\) \(2\) \(3\) \(4\) \(5\) \(6\) \(7\) \(8\) \(9\) \(10\) \(11\)
\(\chi_{37}(1,\cdot)\) 37.a 1 no \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\)
\(\chi_{37}(2,\cdot)\) 37.i 36 yes \(-1\) \(1\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{23}{36}\right)\) \(-i\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{37}(3,\cdot)\) 37.h 18 yes \(1\) \(1\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{11}{18}\right)\) \(-1\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{37}(4,\cdot)\) 37.h 18 yes \(1\) \(1\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{5}{18}\right)\) \(-1\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{37}(5,\cdot)\) 37.i 36 yes \(-1\) \(1\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{25}{36}\right)\) \(i\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\)
\(\chi_{37}(6,\cdot)\) 37.d 4 yes \(-1\) \(1\) \(-i\) \(-1\) \(-1\) \(i\) \(i\) \(1\) \(i\) \(1\) \(1\) \(-1\)
\(\chi_{37}(7,\cdot)\) 37.f 9 yes \(1\) \(1\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{4}{9}\right)\) \(1\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{37}(8,\cdot)\) 37.g 12 yes \(-1\) \(1\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{11}{12}\right)\) \(i\) \(e\left(\frac{2}{3}\right)\) \(i\) \(e\left(\frac{1}{3}\right)\) \(1\) \(-1\)
\(\chi_{37}(9,\cdot)\) 37.f 9 yes \(1\) \(1\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{2}{9}\right)\) \(1\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{37}(10,\cdot)\) 37.c 3 yes \(1\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\)
\(\chi_{37}(11,\cdot)\) 37.e 6 yes \(1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{2}{3}\right)\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\)
\(\chi_{37}(12,\cdot)\) 37.f 9 yes \(1\) \(1\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{8}{9}\right)\) \(1\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{37}(13,\cdot)\) 37.i 36 yes \(-1\) \(1\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{1}{36}\right)\) \(i\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\)
\(\chi_{37}(14,\cdot)\) 37.g 12 yes \(-1\) \(1\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{12}\right)\) \(-i\) \(e\left(\frac{1}{3}\right)\) \(-i\) \(e\left(\frac{2}{3}\right)\) \(1\) \(-1\)
\(\chi_{37}(15,\cdot)\) 37.i 36 yes \(-1\) \(1\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{11}{36}\right)\) \(-i\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{37}(16,\cdot)\) 37.f 9 yes \(1\) \(1\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{5}{9}\right)\) \(1\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{37}(17,\cdot)\) 37.i 36 yes \(-1\) \(1\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{17}{36}\right)\) \(i\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{37}(18,\cdot)\) 37.i 36 yes \(-1\) \(1\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{31}{36}\right)\) \(-i\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\)
\(\chi_{37}(19,\cdot)\) 37.i 36 yes \(-1\) \(1\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{13}{36}\right)\) \(i\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\)
\(\chi_{37}(20,\cdot)\) 37.i 36 yes \(-1\) \(1\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{35}{36}\right)\) \(-i\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{37}(21,\cdot)\) 37.h 18 yes \(1\) \(1\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{1}{18}\right)\) \(-1\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{37}(22,\cdot)\) 37.i 36 yes \(-1\) \(1\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{29}{36}\right)\) \(i\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{37}(23,\cdot)\) 37.g 12 yes \(-1\) \(1\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{7}{12}\right)\) \(i\) \(e\left(\frac{1}{3}\right)\) \(i\) \(e\left(\frac{2}{3}\right)\) \(1\) \(-1\)
\(\chi_{37}(24,\cdot)\) 37.i 36 yes \(-1\) \(1\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{19}{36}\right)\) \(-i\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\)
\(\chi_{37}(25,\cdot)\) 37.h 18 yes \(1\) \(1\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{7}{18}\right)\) \(-1\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{37}(26,\cdot)\) 37.c 3 yes \(1\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\)
\(\chi_{37}(27,\cdot)\) 37.e 6 yes \(1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\)
\(\chi_{37}(28,\cdot)\) 37.h 18 yes \(1\) \(1\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{13}{18}\right)\) \(-1\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{37}(29,\cdot)\) 37.g 12 yes \(-1\) \(1\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{12}\right)\) \(-i\) \(e\left(\frac{2}{3}\right)\) \(-i\) \(e\left(\frac{1}{3}\right)\) \(1\) \(-1\)
\(\chi_{37}(30,\cdot)\) 37.h 18 yes \(1\) \(1\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{17}{18}\right)\) \(-1\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{37}(31,\cdot)\) 37.d 4 yes \(-1\) \(1\) \(i\) \(-1\) \(-1\) \(-i\) \(-i\) \(1\) \(-i\) \(1\) \(1\) \(-1\)
\(\chi_{37}(32,\cdot)\) 37.i 36 yes \(-1\) \(1\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{7}{36}\right)\) \(-i\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\)
Click here to search among the remaining 4 characters.