sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(37, base_ring=CyclotomicField(36))
M = H._module
chi = DirichletCharacter(H, M([25]))
pari:[g,chi] = znchar(Mod(20,37))
| Modulus: | \(37\) | |
| Conductor: | \(37\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(36\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{37}(2,\cdot)\)
\(\chi_{37}(5,\cdot)\)
\(\chi_{37}(13,\cdot)\)
\(\chi_{37}(15,\cdot)\)
\(\chi_{37}(17,\cdot)\)
\(\chi_{37}(18,\cdot)\)
\(\chi_{37}(19,\cdot)\)
\(\chi_{37}(20,\cdot)\)
\(\chi_{37}(22,\cdot)\)
\(\chi_{37}(24,\cdot)\)
\(\chi_{37}(32,\cdot)\)
\(\chi_{37}(35,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\(2\) → \(e\left(\frac{25}{36}\right)\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(11\) |
| \( \chi_{ 37 }(20, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{25}{36}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{35}{36}\right)\) | \(-i\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)