Learn more

Refine search


Results (1-50 of 63312 matches)

Next   displayed columns for results
Label Class Conductor Rank* Torsion $\textrm{End}^0(J_{\overline\Q})$ Igusa-Clebsch invariants Igusa invariants G2-invariants Equation
196.a.21952.1 196.a \( 2^{2} \cdot 7^{2} \) $0$ $\Z/6\Z\oplus\Z/6\Z$ \(\mathrm{M}_2(\Q)\) $[1340,1345,149855,2809856]$ $[335,4620,90160,2214800,21952]$ $[\frac{4219140959375}{21952},\frac{6203236875}{784},\frac{12905875}{28}]$ $y^2 + (x^2 + x)y = x^6 + 3x^5 + 6x^4 + 7x^3 + 6x^2 + 3x + 1$
249.a.249.1 249.a \( 3 \cdot 83 \) $0$ $\Z/14\Z$ \(\Q\) $[108,57,2259,-31872]$ $[27,28,32,20,-249]$ $[-\frac{4782969}{83},-\frac{183708}{83},-\frac{7776}{83}]$ $y^2 + (x^3 + 1)y = x^2 + x$
249.a.6723.1 249.a \( 3 \cdot 83 \) $0$ $\Z/28\Z$ \(\Q\) $[1932,87897,65765571,860544]$ $[483,6058,-161212,-28641190,6723]$ $[\frac{324526850403}{83},\frac{25281736298}{249},-\frac{4178776252}{747}]$ $y^2 + (x^3 + 1)y = -x^5 + x^3 + x^2 + 3x + 2$
277.a.277.1 277.a \( 277 \) $0$ $\Z/15\Z$ \(\Q\) $[64,352,9552,-1108]$ $[32,-16,-464,-3776,-277]$ $[-\frac{33554432}{277},\frac{524288}{277},\frac{475136}{277}]$ $y^2 + (x^3 + x^2 + x + 1)y = -x^2 - x$
277.a.277.2 277.a \( 277 \) $0$ $\Z/5\Z$ \(\Q\) $[4480,1370512,1511819744,-1108]$ $[2240,-19352,164384,-1569936,-277]$ $[-\frac{56394933862400000}{277},\frac{217505333248000}{277},-\frac{824813158400}{277}]$ $y^2 + y = x^5 - 9x^4 + 14x^3 - 19x^2 + 11x - 6$
295.a.295.1 295.a \( 5 \cdot 59 \) $0$ $\Z/14\Z$ \(\Q\) $[108,-39,20835,37760]$ $[27,32,-256,-1984,295]$ $[\frac{14348907}{295},\frac{629856}{295},-\frac{186624}{295}]$ $y^2 + (x^3 + 1)y = -x^2$
295.a.295.2 295.a \( 5 \cdot 59 \) $0$ $\Z/2\Z$ \(\Q\) $[198804,305807001,18482629056189,-37760]$ $[49701,90182600,203402032096,494095763610824,-295]$ $[-\frac{303267334973269931148501}{295},-\frac{2214359494206283568520}{59},-\frac{502441543825401014496}{295}]$ $y^2 + (x^2 + x + 1)y = x^5 - 40x^3 + 22x^2 + 389x - 608$
349.a.349.1 349.a \( 349 \) $0$ $\Z/13\Z$ \(\Q\) $[8,208,1464,-1396]$ $[4,-34,-124,-413,-349]$ $[-\frac{1024}{349},\frac{2176}{349},\frac{1984}{349}]$ $y^2 + (x^3 + x^2 + x + 1)y = -x^3 - x^2$
353.a.353.1 353.a \( 353 \) $0$ $\Z/11\Z$ \(\Q\) $[188,817,30871,45184]$ $[47,58,256,2167,353]$ $[\frac{229345007}{353},\frac{6021734}{353},\frac{565504}{353}]$ $y^2 + (x^3 + x + 1)y = x^2$
388.a.776.1 388.a \( 2^{2} \cdot 97 \) $0$ $\Z/21\Z$ \(\Q\) $[36,1569,-13743,99328]$ $[9,-62,356,-160,776]$ $[\frac{59049}{776},-\frac{22599}{388},\frac{7209}{194}]$ $y^2 + (x^3 + x + 1)y = -x^4 + 2x^2 + x$
389.a.389.1 389.a \( 389 \) $0$ $\Z/10\Z$ \(\Q\) $[2440,51100,45041351,1556]$ $[1220,53500,2084961,-79649395,389]$ $[\frac{2702708163200000}{389},\frac{97147868000000}{389},\frac{3103255952400}{389}]$ $y^2 + (x^3 + x)y = x^5 - 2x^4 - 8x^3 + 16x + 7$
389.a.389.2 389.a \( 389 \) $0$ $\Z/10\Z$ \(\Q\) $[16,100,1775,1556]$ $[8,-14,-159,-367,389]$ $[\frac{32768}{389},-\frac{7168}{389},-\frac{10176}{389}]$ $y^2 + (x + 1)y = x^5 + 2x^4 + 2x^3 + x^2$
394.a.394.1 394.a \( 2 \cdot 197 \) $0$ $\Z/10\Z$ \(\Q\) $[11032,106300,393913607,1576]$ $[5516,1250044,371875905,122164372511,394]$ $[12960598758485504,532478222573696,28717744887720]$ $y^2 + (x^3 + x)y = 2x^5 + x^4 - 12x^3 + 17x - 9$
394.a.3152.1 394.a \( 2 \cdot 197 \) $0$ $\Z/20\Z$ \(\Q\) $[80,-20,649,-12608]$ $[40,70,39,-835,-3152]$ $[-\frac{6400000}{197},-\frac{280000}{197},-\frac{3900}{197}]$ $y^2 + (x + 1)y = -x^5$
400.a.409600.1 400.a \( 2^{4} \cdot 5^{2} \) $0$ $\Z/3\Z\oplus\Z/6\Z$ \(\mathrm{M}_2(\Q)\) $[248,181,14873,50]$ $[992,39072,1945600,100853504,409600]$ $[\frac{58632501248}{25},\frac{2327987904}{25},4674304]$ $y^2 = x^6 + 4x^4 + 4x^2 + 1$
427.a.2989.1 427.a \( 7 \cdot 61 \) $0$ $\Z/14\Z$ \(\Q\) $[4564,-22439,-35962915,-382592]$ $[1141,55180,3641688,277583402,-2989]$ $[-\frac{39466820645749}{61},-\frac{1672794336220}{61},-\frac{96756008472}{61}]$ $y^2 + (x^3 + 1)y = x^5 - x^4 - 5x^3 + 4x^2 + 4x - 4$
461.a.461.1 461.a \( 461 \) $0$ $\Z/7\Z$ \(\Q\) $[1176,144,66456,1844]$ $[588,14382,467132,16957923,461]$ $[\frac{70288881159168}{461},\frac{2923824242304}{461},\frac{161508086208}{461}]$ $y^2 + x^3y = x^5 - 3x^3 + 3x - 2$
461.a.461.2 461.a \( 461 \) $0$ $\mathsf{trivial}$ \(\Q\) $[80664,166117104,3752725952952,1844]$ $[40332,40091742,45075737276,52661714805267,461]$ $[\frac{106720731303787612818432}{461},\frac{2630293443843585469056}{461},\frac{73323359651716069824}{461}]$ $y^2 + y = x^5 - x^4 - 39x^3 + 10x^2 + 272x - 306$
464.a.464.1 464.a \( 2^{4} \cdot 29 \) $0$ $\Z/8\Z$ \(\Q\) $[136,280,15060,1856]$ $[68,146,-64,-6417,464]$ $[\frac{90870848}{29},\frac{2869192}{29},-\frac{18496}{29}]$ $y^2 + (x + 1)y = -x^6 - 2x^5 - 2x^4 - x^3$
464.a.29696.1 464.a \( 2^{4} \cdot 29 \) $0$ $\Z/2\Z\oplus\Z/8\Z$ \(\Q\) $[680,-5255,-1253953,-3712]$ $[680,22770,1180736,71106895,-29696]$ $[-\frac{141985700000}{29},-\frac{6991813125}{29},-\frac{533176100}{29}]$ $y^2 + (x + 1)y = 8x^5 + 3x^4 - 4x^3 - 2x^2$
464.a.29696.2 464.a \( 2^{4} \cdot 29 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ \(\Q\) $[45368,202225,3012190355,-3712]$ $[45368,85625826,215176422416,607585463496703,-29696]$ $[-\frac{187693059992988715232}{29},-\frac{7808250185554819143}{29},-\frac{432507850151022641}{29}]$ $y^2 + xy = 4x^5 + 33x^4 + 72x^3 + 16x^2 + x$
472.a.944.1 472.a \( 2^{3} \cdot 59 \) $0$ $\Z/2\Z\oplus\Z/8\Z$ \(\Q\) $[280,760,60604,-3776]$ $[140,690,4544,40015,-944]$ $[-\frac{3361400000}{59},-\frac{118335000}{59},-\frac{5566400}{59}]$ $y^2 + (x^2 + 1)y = x^5 - x^4 - 2x^3 + x$
472.a.60416.1 472.a \( 2^{3} \cdot 59 \) $0$ $\Z/8\Z$ \(\Q\) $[152,17065,1592025,7552]$ $[152,-10414,-926656,-62325777,60416]$ $[\frac{79235168}{59},-\frac{35714813}{59},-\frac{20907676}{59}]$ $y^2 + (x + 1)y = 8x^5 + 5x^4 + 4x^3 + 2x^2$
523.a.523.1 523.a \( 523 \) $0$ $\Z/10\Z$ \(\Q\) $[120,-540,-29169,-2092]$ $[60,240,2241,19215,-523]$ $[-\frac{777600000}{523},-\frac{51840000}{523},-\frac{8067600}{523}]$ $y^2 + (x + 1)y = x^5 - x^4 - x^3$
523.a.523.2 523.a \( 523 \) $0$ $\Z/2\Z$ \(\Q\) $[332400,10084860,1107044456391,-2092]$ $[166200,1149254190,10581558955401,109467476288772525,-523]$ $[-\frac{126810465636208320000000000}{523},-\frac{5276053055713522320000000}{523},-\frac{292288477352026798440000}{523}]$ $y^2 + xy = x^5 - 31x^4 - 110x^3 + 21x^2 - x$
555.a.8325.1 555.a \( 3 \cdot 5 \cdot 37 \) $0$ $\Z/2\Z\oplus\Z/10\Z$ \(\Q\) $[1264,18124,6869487,33300]$ $[632,13622,351361,9125317,8325]$ $[\frac{100828984082432}{8325},\frac{3438682756096}{8325},\frac{140342016064}{8325}]$ $y^2 + (x + 1)y = 3x^5 - 2x^4 - 4x^3 + x^2 + x$
574.a.293888.1 574.a \( 2 \cdot 7 \cdot 41 \) $0$ $\Z/2\Z\oplus\Z/10\Z$ \(\Q\) $[68,-55823,-955895,-37617664]$ $[17,2338,2304,-1356769,-293888]$ $[-\frac{1419857}{293888},-\frac{820471}{20992},-\frac{2601}{1148}]$ $y^2 + (x^2 + x)y = x^5 - x^4 - 3x^2 + x + 1$
576.b.147456.1 576.b \( 2^{6} \cdot 3^{2} \) $0$ $\Z/4\Z\oplus\Z/4\Z$ \(\mathrm{M}_2(\Q)\) $[152,109,5469,18]$ $[608,14240,405504,10942208,147456]$ $[\frac{5071050752}{9},\frac{195344320}{9},1016576]$ $y^2 = x^6 + 2x^4 + 2x^2 + 1$
587.a.587.1 587.a \( 587 \) $1$ $\mathsf{trivial}$ \(\Q\) $[60,1401,54147,-75136]$ $[15,-49,-501,-2479,-587]$ $[-\frac{759375}{587},\frac{165375}{587},\frac{112725}{587}]$ $y^2 + (x^3 + x + 1)y = -x^2 - x$
597.a.597.1 597.a \( 3 \cdot 199 \) $0$ $\Z/7\Z$ \(\Q\) $[120,192,9912,2388]$ $[60,118,-68,-4501,597]$ $[\frac{259200000}{199},\frac{8496000}{199},-\frac{81600}{199}]$ $y^2 + y = x^5 + 2x^4 + 3x^3 + 2x^2 + x$
603.a.603.1 603.a \( 3^{2} \cdot 67 \) $0$ $\Z/10\Z$ \(\Q\) $[1672,75628,49887881,2412]$ $[836,16516,-1263521,-332270453,603]$ $[\frac{408348897330176}{603},\frac{9649919856896}{603},-\frac{883069772816}{603}]$ $y^2 + (x^2 + 1)y = x^5 + 8x^4 + 4x^3 + 4x^2 + 2x$
603.a.603.2 603.a \( 3^{2} \cdot 67 \) $0$ $\Z/10\Z$ \(\Q\) $[176,148,7375,-2412]$ $[88,298,1361,7741,-603]$ $[-\frac{5277319168}{603},-\frac{203078656}{603},-\frac{10539584}{603}]$ $y^2 + (x^2 + 1)y = x^5 - x^3 + x$
604.a.9664.1 604.a \( 2^{2} \cdot 151 \) $0$ $\mathsf{trivial}$ \(\Q\) $[49556,-797087975,-23996873337603,1236992]$ $[12389,39607304,223396249616,299729401586052,9664]$ $[\frac{291864493641401980949}{9664},\frac{9414430497536890397}{1208},\frac{2143030742187944921}{604}]$ $y^2 + (x^2 + x + 1)y = 4x^5 + 9x^4 + 48x^3 - 4x^2 - 53x - 21$
604.a.9664.2 604.a \( 2^{2} \cdot 151 \) $0$ $\Z/27\Z$ \(\Q\) $[116,6265,95277,1236992]$ $[29,-226,836,-6708,9664]$ $[\frac{20511149}{9664},-\frac{2755957}{4832},\frac{175769}{2416}]$ $y^2 + (x^3 + 1)y = -x^4 + x^3 + x^2 - x$
644.b.14812.1 644.b \( 2^{2} \cdot 7 \cdot 23 \) $0$ $\Z/10\Z$ \(\Q\) $[1268,-40511,-17688719,-1895936]$ $[317,5875,170781,4905488,-14812]$ $[-\frac{3201078401357}{14812},-\frac{187148201375}{14812},-\frac{17161611909}{14812}]$ $y^2 + (x^3 + 1)y = x^5 - x^4 - 4x^3 + 5x^2 - x - 1$
676.b.17576.1 676.b \( 2^{2} \cdot 13^{2} \) $0$ $\Z/3\Z\oplus\Z/3\Z$ \(\mathrm{M}_2(\Q)\) $[1244,1249,129167,2249728]$ $[311,3978,72332,1667692,17576]$ $[\frac{2909390022551}{17576},\frac{4602275343}{676},\frac{10349147}{26}]$ $y^2 + (x^2 + x)y = -x^6 + 3x^5 - 6x^4 + 6x^3 - 6x^2 + 3x - 1$
688.a.2752.1 688.a \( 2^{4} \cdot 43 \) $0$ $\Z/20\Z$ \(\Q\) $[32,112,-680,-344]$ $[32,-32,1344,10496,-2752]$ $[-\frac{524288}{43},\frac{16384}{43},-\frac{21504}{43}]$ $y^2 + y = 2x^5 - 5x^4 + 4x^3 - x$
688.a.704512.2 688.a \( 2^{4} \cdot 43 \) $0$ $\Z/10\Z$ \(\Q\) $[464,-248,-39602,-86]$ $[1856,146176,15688704,1937702912,-704512]$ $[-\frac{1344218660864}{43},-\frac{57041383424}{43},-\frac{3298550016}{43}]$ $y^2 = 2x^5 - 7x^4 - 8x^3 + 2x^2 + 4x + 1$
688.a.704512.1 688.a \( 2^{4} \cdot 43 \) $0$ $\Z/10\Z$ \(\Q\) $[128,532,26830,86]$ $[512,5248,-408576,-59183104,704512]$ $[\frac{2147483648}{43},\frac{42991616}{43},-\frac{6537216}{43}]$ $y^2 = 2x^5 + 4x^3 + x^2 + 2x + 1$
691.a.691.1 691.a \( 691 \) $0$ $\Z/8\Z$ \(\Q\) $[104,-824,-20333,-2764]$ $[52,250,601,-7812,-691]$ $[-\frac{380204032}{691},-\frac{35152000}{691},-\frac{1625104}{691}]$ $y^2 + (x + 1)y = x^5 - x^3 - x^2$
704.a.45056.1 704.a \( 2^{6} \cdot 11 \) $0$ $\Z/2\Z\oplus\Z/6\Z$ \(\Q\) $[134,-464,-15328,-176]$ $[268,4230,61444,-356477,-45056]$ $[-\frac{1350125107}{44},-\frac{636113745}{352},-\frac{68955529}{704}]$ $y^2 + y = 4x^5 + 4x^4 - x^3 - 2x^2$
708.a.2832.1 708.a \( 2^{2} \cdot 3 \cdot 59 \) $0$ $\Z/10\Z$ \(\Q\) $[148,2065,76361,362496]$ $[37,-29,-59,-756,2832]$ $[\frac{69343957}{2832},-\frac{1468937}{2832},-\frac{1369}{48}]$ $y^2 + (x^2 + x + 1)y = x^5$
708.a.19116.1 708.a \( 2^{2} \cdot 3 \cdot 59 \) $0$ $\Z/10\Z$ \(\Q\) $[908,-132815,8426215,2446848]$ $[227,7681,-438901,-39657072,19116]$ $[\frac{602738989907}{19116},\frac{89845294523}{19116},-\frac{383324231}{324}]$ $y^2 + (x^3 + 1)y = -x^5 + 4x^2 + 4x - 1$
708.a.181248.1 708.a \( 2^{2} \cdot 3 \cdot 59 \) $0$ $\Z/2\Z$ \(\Q\) $[234100,3468879025,202585466081177,-23199744]$ $[58525,-1820975,60952909,62829762150,-181248]$ $[-\frac{686605237334059580078125}{181248},\frac{365029741228054296875}{181248},-\frac{208774418179643125}{181248}]$ $y^2 + (x^3 + 1)y = -x^6 - 4x^5 + 9x^4 + 48x^3 - 41x^2 - 98x - 36$
709.a.709.1 709.a \( 709 \) $0$ $\Z/8\Z$ \(\Q\) $[160,-1280,-42089,2836]$ $[80,480,1121,-35180,709]$ $[\frac{3276800000}{709},\frac{245760000}{709},\frac{7174400}{709}]$ $y^2 + xy = x^5 - 2x^2 + x$
713.a.713.1 713.a \( 23 \cdot 31 \) $1$ $\mathsf{trivial}$ \(\Q\) $[36,1305,-2547,91264]$ $[9,-51,173,-261,713]$ $[\frac{59049}{713},-\frac{37179}{713},\frac{14013}{713}]$ $y^2 + (x^3 + x + 1)y = -x^5 - x$
713.b.713.1 713.b \( 23 \cdot 31 \) $0$ $\Z/9\Z$ \(\Q\) $[92,73,6379,-91264]$ $[23,19,-41,-326,-713]$ $[-\frac{279841}{31},-\frac{10051}{31},\frac{943}{31}]$ $y^2 + (x^3 + x + 1)y = -x^4$
731.a.12427.1 731.a \( 17 \cdot 43 \) $0$ $\Z/10\Z$ \(\Q\) $[480,-21564,-3373785,-49708]$ $[240,5994,167265,1053891,-12427]$ $[-\frac{796262400000}{12427},-\frac{82861056000}{12427},-\frac{9634464000}{12427}]$ $y^2 + (x^3 + x^2)y = x^5 + 2x^4 - x - 3$
741.a.28899.1 741.a \( 3 \cdot 13 \cdot 19 \) $0$ $\Z/2\Z\oplus\Z/8\Z$ \(\Q\) $[576,-840,740385,115596]$ $[288,3596,-38169,-5980972,28899]$ $[\frac{220150628352}{3211},\frac{9544531968}{3211},-\frac{351765504}{3211}]$ $y^2 + (x + 1)y = -3x^5 - x^4 + 2x^2 + x$
743.a.743.1 743.a \( 743 \) $1$ $\mathsf{trivial}$ \(\Q\) $[28,1945,15219,95104]$ $[7,-79,-53,-1653,743]$ $[\frac{16807}{743},-\frac{27097}{743},-\frac{2597}{743}]$ $y^2 + (x^3 + x + 1)y = -x^4 + x^2$
Next   displayed columns for results