# Properties

 Label 603.a.603.1 Conductor 603 Discriminant -603 Sato-Tate group $\mathrm{USp}(4)$ $$\End(J_{\overline{\Q}}) \otimes \R$$ $$\R$$ $$\End(J_{\overline{\Q}}) \otimes \Q$$ $$\Q$$ $$\overline{\Q}$$-simple yes $$\mathrm{GL}_2$$-type no

# Related objects

Show commands for: Magma / SageMath

## Minimal equation

magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![0, 2, 4, 4, 8, 1], R![1, 0, 1]);
sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([0, 2, 4, 4, 8, 1]), R([1, 0, 1]))

$y^2 + (x^2 + 1)y = x^5 + 8x^4 + 4x^3 + 4x^2 + 2x$

## Invariants

 magma: Conductor(LSeries(C)); Factorization($1); $$N$$ = $$603$$ = $$3^{2} \cdot 67$$ magma: Discriminant(C); Factorization(Integers()!$1); $$\Delta$$ = $$-603$$ = $$-1 \cdot 3^{2} \cdot 67$$

### G2 invariants

magma: G2Invariants(C);

 $$I_2$$ = $$-6688$$ = $$-1 \cdot 2^{5} \cdot 11 \cdot 19$$ $$I_4$$ = $$1210048$$ = $$2^{6} \cdot 7 \cdot 37 \cdot 73$$ $$I_6$$ = $$-3192824384$$ = $$-1 \cdot 2^{6} \cdot 49887881$$ $$I_{10}$$ = $$-2469888$$ = $$-1 \cdot 2^{12} \cdot 3^{2} \cdot 67$$ $$J_2$$ = $$-836$$ = $$-1 \cdot 2^{2} \cdot 11 \cdot 19$$ $$J_4$$ = $$16516$$ = $$2^{2} \cdot 4129$$ $$J_6$$ = $$1263521$$ = $$7 \cdot 180503$$ $$J_8$$ = $$-332270453$$ = $$-1 \cdot 332270453$$ $$J_{10}$$ = $$-603$$ = $$-1 \cdot 3^{2} \cdot 67$$ $$g_1$$ = $$408348897330176/603$$ $$g_2$$ = $$9649919856896/603$$ $$g_3$$ = $$-883069772816/603$$
Alternative geometric invariants: G2

## Automorphism group

 magma: AutomorphismGroup(C); IdentifyGroup($1); $$\mathrm{Aut}(X)$$ $$\simeq$$ $$C_2$$ (GAP id : [2,1]) magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1); $$\mathrm{Aut}(X_{\overline{\Q}})$$ $$\simeq$$ $$C_2$$ (GAP id : [2,1])

## Rational points

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);

This curve is locally solvable everywhere.

magma: [C![-1,-34,4],C![0,-1,1],C![0,0,1],C![1,0,0]];

All rational points: (-1 : -34 : 4), (0 : -1 : 1), (0 : 0 : 1), (1 : 0 : 0)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));

Number of rational Weierstrass points: $$2$$

## Invariants of the Jacobian:

Analytic rank: $$0$$

magma: TwoSelmerGroup(Jacobian(C)); NumberOfGenerators($1); 2-Selmer rank: $$1$$ magma: HasSquareSha(Jacobian(C)); Order of Ш*: square Tamagawa numbers: 1 (p = 3), 1 (p = 67) magma: TorsionSubgroup(Jacobian(SimplifiedModel(C))); AbelianInvariants($1);

Torsion: $$\Z/{10}\Z$$

### Sato-Tate group

 $$\mathrm{ST}$$ $$\simeq$$ $\mathrm{USp}(4)$ $$\mathrm{ST}^0$$ $$\simeq$$ $$\mathrm{USp}(4)$$

### Decomposition

Simple over $$\overline{\Q}$$

### Endomorphisms

Not of $$\GL_2$$-type over $$\Q$$

Endomorphism ring over $$\Q$$:
 $$\End (J_{})$$ $$\simeq$$ $$\Z$$ $$\End (J_{}) \otimes \Q$$ $$\simeq$$ $$\Q$$ $$\End (J_{}) \otimes \R$$ $$\simeq$$ $$\R$$

All $$\overline{\Q}$$-endomorphisms of the Jacobian are defined over $$\Q$$.