Minimal equation
Minimal equation
Simplified equation
$y^2 + (x + 1)y = -3x^5 - x^4 + 2x^2 + x$ | (homogenize, simplify) |
$y^2 + (xz^2 + z^3)y = -3x^5z - x^4z^2 + 2x^2z^4 + xz^5$ | (dehomogenize, simplify) |
$y^2 = -12x^5 - 4x^4 + 9x^2 + 6x + 1$ | (homogenize, minimize) |
Invariants
Conductor: | \( N \) | \(=\) | \(741\) | \(=\) | \( 3 \cdot 13 \cdot 19 \) |
|
Discriminant: | \( \Delta \) | \(=\) | \(-28899\) | \(=\) | \( - 3^{2} \cdot 13^{2} \cdot 19 \) |
|
Igusa-Clebsch invariants
Igusa invariants
G2 invariants
\( I_2 \) | \(=\) | \(576\) | \(=\) | \( 2^{6} \cdot 3^{2} \) |
\( I_4 \) | \(=\) | \(-840\) | \(=\) | \( - 2^{3} \cdot 3 \cdot 5 \cdot 7 \) |
\( I_6 \) | \(=\) | \(740385\) | \(=\) | \( 3^{2} \cdot 5 \cdot 16453 \) |
\( I_{10} \) | \(=\) | \(115596\) | \(=\) | \( 2^{2} \cdot 3^{2} \cdot 13^{2} \cdot 19 \) |
\( J_2 \) | \(=\) | \(288\) | \(=\) | \( 2^{5} \cdot 3^{2} \) |
\( J_4 \) | \(=\) | \(3596\) | \(=\) | \( 2^{2} \cdot 29 \cdot 31 \) |
\( J_6 \) | \(=\) | \(-38169\) | \(=\) | \( - 3^{2} \cdot 4241 \) |
\( J_8 \) | \(=\) | \(-5980972\) | \(=\) | \( - 2^{2} \cdot 19 \cdot 78697 \) |
\( J_{10} \) | \(=\) | \(28899\) | \(=\) | \( 3^{2} \cdot 13^{2} \cdot 19 \) |
\( g_1 \) | \(=\) | \(220150628352/3211\) | ||
\( g_2 \) | \(=\) | \(9544531968/3211\) | ||
\( g_3 \) | \(=\) | \(-351765504/3211\) |
Automorphism group
\(\mathrm{Aut}(X)\) | \(\simeq\) | $C_2$ |
|
\(\mathrm{Aut}(X_{\overline{\Q}})\) | \(\simeq\) | $C_2$ |
|
Rational points
All points: \((1 : 0 : 0),\, (0 : 0 : 1),\, (0 : -1 : 1),\, (1 : -1 : 1),\, (-1 : -9 : 3)\)
Number of rational Weierstrass points: \(3\)
This curve is locally solvable everywhere.
Mordell-Weil group of the Jacobian
Group structure: \(\Z/{2}\Z \oplus \Z/{8}\Z\)
Generator | $D_0$ | Height | Order | |||||
---|---|---|---|---|---|---|---|---|
\((-1 : -9 : 3) + (1 : -1 : 1) - 2 \cdot(1 : 0 : 0)\) | \((x - z) (3x + z)\) | \(=\) | \(0,\) | \(2y\) | \(=\) | \(-xz^2 - z^3\) | \(0\) | \(2\) |
\((0 : -1 : 1) + (1 : -1 : 1) - 2 \cdot(1 : 0 : 0)\) | \(x (x - z)\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(-z^3\) | \(0\) | \(8\) |
Generator | $D_0$ | Height | Order | |||||
---|---|---|---|---|---|---|---|---|
\((-1 : -9 : 3) + (1 : -1 : 1) - 2 \cdot(1 : 0 : 0)\) | \((x - z) (3x + z)\) | \(=\) | \(0,\) | \(2y\) | \(=\) | \(-xz^2 - z^3\) | \(0\) | \(2\) |
\((0 : -1 : 1) + (1 : -1 : 1) - 2 \cdot(1 : 0 : 0)\) | \(x (x - z)\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(-z^3\) | \(0\) | \(8\) |
Generator | $D_0$ | Height | Order | |||||
---|---|---|---|---|---|---|---|---|
\(D_0 - 2 \cdot(1 : 0 : 0)\) | \((x - z) (3x + z)\) | \(=\) | \(0,\) | \(2y\) | \(=\) | \(-xz^2 - z^3\) | \(0\) | \(2\) |
\((0 : -1 : 1) + (1 : 0 : 1) - 2 \cdot(1 : 0 : 0)\) | \(x (x - z)\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(xz^2 - z^3\) | \(0\) | \(8\) |
BSD invariants
Hasse-Weil conjecture: | unverified |
Analytic rank: | \(0\) |
Mordell-Weil rank: | \(0\) |
2-Selmer rank: | \(2\) |
Regulator: | \( 1 \) |
Real period: | \( 18.75684 \) |
Tamagawa product: | \( 4 \) |
Torsion order: | \( 16 \) |
Leading coefficient: | \( 0.293075 \) |
Analytic order of Ш: | \( 1 \) (rounded) |
Order of Ш: | square |
Local invariants
Prime | ord(\(N\)) | ord(\(\Delta\)) | Tamagawa | Root number | L-factor | Cluster picture | Tame reduction? |
---|---|---|---|---|---|---|---|
\(3\) | \(1\) | \(2\) | \(2\) | \(1\) | \(( 1 + T )( 1 + 3 T^{2} )\) | yes | |
\(13\) | \(1\) | \(2\) | \(2\) | \(1\) | \(( 1 + T )( 1 + 2 T + 13 T^{2} )\) | yes | |
\(19\) | \(1\) | \(1\) | \(1\) | \(1\) | \(( 1 + T )( 1 - 4 T + 19 T^{2} )\) | yes |
Galois representations
The mod-$\ell$ Galois representation has maximal image \(\GSp(4,\F_\ell)\) for all primes \( \ell \) except those listed.
Prime \(\ell\) | mod-\(\ell\) image | Is torsion prime? |
---|---|---|
\(2\) | 2.120.3 | yes |
Sato-Tate group
\(\mathrm{ST}\) | \(\simeq\) | $\mathrm{USp}(4)$ |
\(\mathrm{ST}^0\) | \(\simeq\) | \(\mathrm{USp}(4)\) |
Decomposition of the Jacobian
Simple over \(\overline{\Q}\)
Endomorphisms of the Jacobian
Not of \(\GL_2\)-type over \(\Q\)
Endomorphism ring over \(\Q\):
\(\End (J_{})\) | \(\simeq\) | \(\Z\) |
\(\End (J_{}) \otimes \Q \) | \(\simeq\) | \(\Q\) |
\(\End (J_{}) \otimes \R\) | \(\simeq\) | \(\R\) |
All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).