Properties

Label 708.a.181248.1
Conductor 708
Discriminant -181248
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Learn more about

Show commands for: Magma / SageMath

Minimal equation

magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![-36, -98, -41, 48, 9, -4, -1], R![1, 0, 0, 1]);
sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([-36, -98, -41, 48, 9, -4, -1]), R([1, 0, 0, 1]))

$y^2 + (x^3 + 1)y = -x^6 - 4x^5 + 9x^4 + 48x^3 - 41x^2 - 98x - 36$

Invariants

magma: Conductor(LSeries(C)); Factorization($1);
\( N \)  =  \( 708 \)  =  \( 2^{2} \cdot 3 \cdot 59 \)
magma: Discriminant(C); Factorization(Integers()!$1);
\( \Delta \)  =  \(-181248\)  =  \( -1 \cdot 2^{10} \cdot 3 \cdot 59 \)

Igusa-Clebsch invariants

magma: IgusaClebschInvariants(C); [Factorization(Integers()!a): a in $1];
sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]

Igusa invariants

magma: IgusaInvariants(C); [Factorization(Integers()!a): a in $1];

G2 invariants

magma: G2Invariants(C);

\( I_2 \)  =  \(468200\)  =  \( 2^{3} \cdot 5^{2} \cdot 2341 \)
\( I_4 \)  =  \(13875516100\)  =  \( 2^{2} \cdot 5^{2} \cdot 138755161 \)
\( I_6 \)  =  \(1620683728649416\)  =  \( 2^{3} \cdot 1069463 \cdot 189427279 \)
\( I_{10} \)  =  \(-742391808\)  =  \( -1 \cdot 2^{22} \cdot 3 \cdot 59 \)
\( J_2 \)  =  \(58525\)  =  \( 5^{2} \cdot 2341 \)
\( J_4 \)  =  \(-1820975\)  =  \( -1 \cdot 5^{2} \cdot 13^{2} \cdot 431 \)
\( J_6 \)  =  \(60952909\)  =  \( 109 \cdot 559201 \)
\( J_8 \)  =  \(62829762150\)  =  \( 2 \cdot 3 \cdot 5^{2} \cdot 47 \cdot 8912023 \)
\( J_{10} \)  =  \(-181248\)  =  \( -1 \cdot 2^{10} \cdot 3 \cdot 59 \)
\( g_1 \)  =  \(-686605237334059580078125/181248\)
\( g_2 \)  =  \(365029741228054296875/181248\)
\( g_3 \)  =  \(-208774418179643125/181248\)
Alternative geometric invariants: Igusa-Clebsch, Igusa, G2

Automorphism group

magma: AutomorphismGroup(C); IdentifyGroup($1);
\(\mathrm{Aut}(X)\)\(\simeq\) \(C_2 \) (GAP id : [2,1])
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) \(C_2 \) (GAP id : [2,1])

Rational points

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);

This curve is locally solvable everywhere.

magma: [];

There are no rational points.

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));

Number of rational Weierstrass points: \(0\)

Invariants of the Jacobian:

Analytic rank: \(0\)

magma: TwoSelmerGroup(Jacobian(C)); NumberOfGenerators($1);

2-Selmer rank: \(3\)

magma: HasSquareSha(Jacobian(C));

Order of Ш*: square

Tamagawa numbers: 1 (p = 2), 1 (p = 3), 1 (p = 59)

magma: TorsionSubgroup(Jacobian(SimplifiedModel(C))); AbelianInvariants($1);

Torsion: \(\Z/{2}\Z\)

2-torsion field: 6.2.24060672.2

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition

Simple over \(\overline{\Q}\)

Endomorphisms

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):
\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).