Label |
$p$ |
$n$ |
$n_0$ |
$n_{\mathrm{abs}}$ |
$f$ |
$f_0$ |
$f_{\mathrm{abs}}$ |
$e$ |
$e_0$ |
$e_{\mathrm{abs}}$ |
$c$ |
$c_0$ |
$c_{\mathrm{abs}}$ |
Base |
Abs. Artin slopes |
Swan slopes |
Means |
Rams |
Generic poly |
Ambiguity |
Field count |
Mass |
Mass (absolute) |
Mass stored |
Mass found |
Wild segments |
2.2.8.36b |
$2$ |
$16$ |
$1$ |
$16$ |
$2$ |
$1$ |
$2$ |
$8$ |
$1$ |
$8$ |
$36$ |
$0$ |
$36$ |
$\Q_{2}$ |
$[2, 2, 3]$ |
$[1, 1, 2]$ |
$\langle\frac{1}{2}, \frac{3}{4}, \frac{11}{8}\rangle$ |
$(1, 1, 5)$ |
$x^8 + 4 b_{15} x^7 + 2 a_{6} x^6 + 4 b_{13} x^5 + 2 b_{4} x^4 + 4 a_{11} x^3 + 4 c_{8} + 8 c_{16} + 2$ |
$16$ |
$694$ |
$576$ |
$288$ |
$288$ |
$100\%$ |
$2$ |
2.2.1.0a1.1-1.8.18b |
$2$ |
$8$ |
$2$ |
$16$ |
$1$ |
$2$ |
$2$ |
$8$ |
$1$ |
$8$ |
$18$ |
$0$ |
$18$ |
$\Q_{2}(\sqrt{5})$ |
$[2, 2, 3]$ |
$[1, 1, 2]$ |
$\langle\frac{1}{2}, \frac{3}{4}, \frac{11}{8}\rangle$ |
$(1, 1, 5)$ |
$x^8 + 4 b_{15} x^7 + 2 a_{6} x^6 + 4 b_{13} x^5 + 2 b_{4} x^4 + 4 a_{11} x^3 + 4 c_{8} + 8 c_{16} + 2$ |
$8$ |
$694$ |
$576$ |
$288$ |
$288$ |
$100\%$ |
$2$ |
2.1.2.2a1.1-2.4.20b |
$2$ |
$8$ |
$2$ |
$16$ |
$2$ |
$1$ |
$2$ |
$4$ |
$2$ |
$8$ |
$20$ |
$2$ |
$22$ |
$\Q_{2}(\sqrt{-1})$ |
$[2, 2, 3]$ |
$[1, 3]$ |
$\langle\frac{1}{2}, \frac{7}{4}\rangle$ |
$(1, 5)$ |
$x^4 + (b_{11} \pi^3 + a_{7} \pi^2) x^3 + a_{2} \pi x^2 + b_{9} \pi^3 x + c_{12} \pi^4 + c_{4} \pi^2 + \pi$ |
$8$ |
$108$ |
$144$ |
$36$ |
$36$ |
$100\%$ |
$2$ |
2.1.2.2a1.2-2.4.20b |
$2$ |
$8$ |
$2$ |
$16$ |
$2$ |
$1$ |
$2$ |
$4$ |
$2$ |
$8$ |
$20$ |
$2$ |
$22$ |
$\Q_{2}(\sqrt{-5})$ |
$[2, 2, 3]$ |
$[1, 3]$ |
$\langle\frac{1}{2}, \frac{7}{4}\rangle$ |
$(1, 5)$ |
$x^4 + (b_{11} \pi^3 + a_{7} \pi^2) x^3 + a_{2} \pi x^2 + b_{9} \pi^3 x + c_{12} \pi^4 + c_{4} \pi^2 + \pi$ |
$8$ |
$108$ |
$144$ |
$36$ |
$36$ |
$100\%$ |
$2$ |
2.1.2.3a1.1-2.4.12a |
$2$ |
$8$ |
$2$ |
$16$ |
$2$ |
$1$ |
$2$ |
$4$ |
$2$ |
$8$ |
$12$ |
$3$ |
$16$ |
$\Q_{2}(\sqrt{-2})$ |
$[2, 2, 3]$ |
$[1, 1]$ |
$\langle\frac{1}{2}, \frac{3}{4}\rangle$ |
$(1, 1)$ |
$x^4 + a_{3} \pi x^3 + b_{2} \pi x^2 + c_{4} \pi^2 + \pi$ |
$8$ |
$12$ |
$12$ |
$3$ |
$3$ |
$100\%$ |
$1$ |
2.1.2.3a1.2-2.4.12a |
$2$ |
$8$ |
$2$ |
$16$ |
$2$ |
$1$ |
$2$ |
$4$ |
$2$ |
$8$ |
$12$ |
$3$ |
$16$ |
$\Q_{2}(\sqrt{-2\cdot 5})$ |
$[2, 2, 3]$ |
$[1, 1]$ |
$\langle\frac{1}{2}, \frac{3}{4}\rangle$ |
$(1, 1)$ |
$x^4 + a_{3} \pi x^3 + b_{2} \pi x^2 + c_{4} \pi^2 + \pi$ |
$8$ |
$12$ |
$12$ |
$3$ |
$3$ |
$100\%$ |
$1$ |
2.1.2.3a1.3-2.4.12a |
$2$ |
$8$ |
$2$ |
$16$ |
$2$ |
$1$ |
$2$ |
$4$ |
$2$ |
$8$ |
$12$ |
$3$ |
$16$ |
$\Q_{2}(\sqrt{2})$ |
$[2, 2, 3]$ |
$[1, 1]$ |
$\langle\frac{1}{2}, \frac{3}{4}\rangle$ |
$(1, 1)$ |
$x^4 + a_{3} \pi x^3 + b_{2} \pi x^2 + c_{4} \pi^2 + \pi$ |
$8$ |
$12$ |
$12$ |
$3$ |
$3$ |
$100\%$ |
$1$ |
2.1.2.3a1.4-2.4.12a |
$2$ |
$8$ |
$2$ |
$16$ |
$2$ |
$1$ |
$2$ |
$4$ |
$2$ |
$8$ |
$12$ |
$3$ |
$16$ |
$\Q_{2}(\sqrt{2\cdot 5})$ |
$[2, 2, 3]$ |
$[1, 1]$ |
$\langle\frac{1}{2}, \frac{3}{4}\rangle$ |
$(1, 1)$ |
$x^4 + a_{3} \pi x^3 + b_{2} \pi x^2 + c_{4} \pi^2 + \pi$ |
$8$ |
$12$ |
$12$ |
$3$ |
$3$ |
$100\%$ |
$1$ |
2.2.2.4a1.1-1.4.10b |
$2$ |
$4$ |
$4$ |
$16$ |
$1$ |
$2$ |
$2$ |
$4$ |
$2$ |
$8$ |
$10$ |
$4$ |
$11$ |
2.2.2.4a1.1 |
$[2, 2, 3]$ |
$[1, 3]$ |
$\langle\frac{1}{2}, \frac{7}{4}\rangle$ |
$(1, 5)$ |
$x^4 + (b_{11} \pi^3 + a_{7} \pi^2) x^3 + a_{2} \pi x^2 + b_{9} \pi^3 x + c_{12} \pi^4 + c_{4} \pi^2 + \pi$ |
$4$ |
$108$ |
$144$ |
$36$ |
$36$ |
$100\%$ |
$2$ |
2.2.2.4a1.2-1.4.10b |
$2$ |
$4$ |
$4$ |
$16$ |
$1$ |
$2$ |
$2$ |
$4$ |
$2$ |
$8$ |
$10$ |
$4$ |
$11$ |
2.2.2.4a1.2 |
$[2, 2, 3]$ |
$[1, 3]$ |
$\langle\frac{1}{2}, \frac{7}{4}\rangle$ |
$(1, 5)$ |
$x^4 + (b_{11} \pi^3 + a_{7} \pi^2) x^3 + a_{2} \pi x^2 + b_{9} \pi^3 x + c_{12} \pi^4 + c_{4} \pi^2 + \pi$ |
$4$ |
$102$ |
$144$ |
$36$ |
$36$ |
$100\%$ |
$2$ |
2.2.2.4a2.1-1.4.10b |
$2$ |
$4$ |
$4$ |
$16$ |
$1$ |
$2$ |
$2$ |
$4$ |
$2$ |
$8$ |
$10$ |
$4$ |
$11$ |
2.2.2.4a2.1 |
$[2, 2, 3]$ |
$[1, 3]$ |
$\langle\frac{1}{2}, \frac{7}{4}\rangle$ |
$(1, 5)$ |
$x^4 + (b_{11} \pi^3 + a_{7} \pi^2) x^3 + a_{2} \pi x^2 + b_{9} \pi^3 x + c_{12} \pi^4 + c_{4} \pi^2 + \pi$ |
$4$ |
$186$ |
$144$ |
$72$ |
$66$ |
$91.67\%$ |
$2$ |
2.2.2.4a2.2-1.4.10b |
$2$ |
$4$ |
$4$ |
$16$ |
$1$ |
$2$ |
$2$ |
$4$ |
$2$ |
$8$ |
$10$ |
$4$ |
$11$ |
2.2.2.4a2.2 |
$[2, 2, 3]$ |
$[1, 3]$ |
$\langle\frac{1}{2}, \frac{7}{4}\rangle$ |
$(1, 5)$ |
$x^4 + (b_{11} \pi^3 + a_{7} \pi^2) x^3 + a_{2} \pi x^2 + b_{9} \pi^3 x + c_{12} \pi^4 + c_{4} \pi^2 + \pi$ |
$4$ |
$186$ |
$144$ |
$72$ |
$66$ |
$91.67\%$ |
$2$ |
2.2.2.6a1.1-1.4.6a |
$2$ |
$4$ |
$4$ |
$16$ |
$1$ |
$2$ |
$2$ |
$4$ |
$2$ |
$8$ |
$6$ |
$6$ |
$8$ |
2.2.2.6a1.1 |
$[2, 2, 3]$ |
$[1, 1]$ |
$\langle\frac{1}{2}, \frac{3}{4}\rangle$ |
$(1, 1)$ |
$x^4 + a_{3} \pi x^3 + b_{2} \pi x^2 + c_{4} \pi^2 + \pi$ |
$4$ |
$12$ |
$12$ |
$3$ |
$3$ |
$100\%$ |
$1$ |
2.2.2.6a1.2-1.4.6a |
$2$ |
$4$ |
$4$ |
$16$ |
$1$ |
$2$ |
$2$ |
$4$ |
$2$ |
$8$ |
$6$ |
$6$ |
$8$ |
2.2.2.6a1.2 |
$[2, 2, 3]$ |
$[1, 1]$ |
$\langle\frac{1}{2}, \frac{3}{4}\rangle$ |
$(1, 1)$ |
$x^4 + a_{3} \pi x^3 + b_{2} \pi x^2 + c_{4} \pi^2 + \pi$ |
$4$ |
$12$ |
$12$ |
$3$ |
$3$ |
$100\%$ |
$1$ |
2.2.2.6a1.3-1.4.6a |
$2$ |
$4$ |
$4$ |
$16$ |
$1$ |
$2$ |
$2$ |
$4$ |
$2$ |
$8$ |
$6$ |
$6$ |
$8$ |
2.2.2.6a1.3 |
$[2, 2, 3]$ |
$[1, 1]$ |
$\langle\frac{1}{2}, \frac{3}{4}\rangle$ |
$(1, 1)$ |
$x^4 + a_{3} \pi x^3 + b_{2} \pi x^2 + c_{4} \pi^2 + \pi$ |
$4$ |
$20$ |
$12$ |
$6$ |
$45/8$ |
$93.75\%$ |
$1$ |
2.2.2.6a1.4-1.4.6a |
$2$ |
$4$ |
$4$ |
$16$ |
$1$ |
$2$ |
$2$ |
$4$ |
$2$ |
$8$ |
$6$ |
$6$ |
$8$ |
2.2.2.6a1.4 |
$[2, 2, 3]$ |
$[1, 1]$ |
$\langle\frac{1}{2}, \frac{3}{4}\rangle$ |
$(1, 1)$ |
$x^4 + a_{3} \pi x^3 + b_{2} \pi x^2 + c_{4} \pi^2 + \pi$ |
$4$ |
$20$ |
$12$ |
$6$ |
$45/8$ |
$93.75\%$ |
$1$ |
2.2.2.6a1.5-1.4.6a |
$2$ |
$4$ |
$4$ |
$16$ |
$1$ |
$2$ |
$2$ |
$4$ |
$2$ |
$8$ |
$6$ |
$6$ |
$8$ |
2.2.2.6a1.5 |
$[2, 2, 3]$ |
$[1, 1]$ |
$\langle\frac{1}{2}, \frac{3}{4}\rangle$ |
$(1, 1)$ |
$x^4 + a_{3} \pi x^3 + b_{2} \pi x^2 + c_{4} \pi^2 + \pi$ |
$4$ |
$12$ |
$12$ |
$3$ |
$3$ |
$100\%$ |
$1$ |
2.2.2.6a1.6-1.4.6a |
$2$ |
$4$ |
$4$ |
$16$ |
$1$ |
$2$ |
$2$ |
$4$ |
$2$ |
$8$ |
$6$ |
$6$ |
$8$ |
2.2.2.6a1.6 |
$[2, 2, 3]$ |
$[1, 1]$ |
$\langle\frac{1}{2}, \frac{3}{4}\rangle$ |
$(1, 1)$ |
$x^4 + a_{3} \pi x^3 + b_{2} \pi x^2 + c_{4} \pi^2 + \pi$ |
$4$ |
$12$ |
$12$ |
$3$ |
$3$ |
$100\%$ |
$1$ |
2.1.4.6a1.1-2.2.12a |
$2$ |
$4$ |
$4$ |
$16$ |
$2$ |
$1$ |
$2$ |
$2$ |
$4$ |
$8$ |
$12$ |
$6$ |
$18$ |
2.1.4.6a1.1 |
$[2, 2, 3]$ |
$[5]$ |
$\langle\frac{5}{2}\rangle$ |
$(5)$ |
$x^2 + (b_{9} \pi^5 + b_{7} \pi^4 + a_{5} \pi^3) x + c_{10} \pi^6 + \pi$ |
$4$ |
$24$ |
$48$ |
$12$ |
$6$ |
$50.00\%$ |
$1$ |
2.1.4.6a1.2-2.2.12a |
$2$ |
$4$ |
$4$ |
$16$ |
$2$ |
$1$ |
$2$ |
$2$ |
$4$ |
$8$ |
$12$ |
$6$ |
$18$ |
2.1.4.6a1.2 |
$[2, 2, 3]$ |
$[5]$ |
$\langle\frac{5}{2}\rangle$ |
$(5)$ |
$x^2 + (b_{9} \pi^5 + b_{7} \pi^4 + a_{5} \pi^3) x + c_{10} \pi^6 + \pi$ |
$4$ |
$24$ |
$48$ |
$12$ |
$6$ |
$50.00\%$ |
$1$ |
2.1.4.6a2.1-2.2.12a |
$2$ |
$4$ |
$4$ |
$16$ |
$2$ |
$1$ |
$2$ |
$2$ |
$4$ |
$8$ |
$12$ |
$6$ |
$18$ |
2.1.4.6a2.1 |
$[2, 2, 3]$ |
$[5]$ |
$\langle\frac{5}{2}\rangle$ |
$(5)$ |
$x^2 + (b_{9} \pi^5 + b_{7} \pi^4 + a_{5} \pi^3) x + c_{10} \pi^6 + \pi$ |
$4$ |
$52$ |
$48$ |
$24$ |
$24$ |
$100\%$ |
$1$ |
2.1.4.8b1.1-2.2.4a |
$2$ |
$4$ |
$4$ |
$16$ |
$2$ |
$1$ |
$2$ |
$2$ |
$4$ |
$8$ |
$4$ |
$8$ |
$14$ |
2.1.4.8b1.1 |
$[2, 2, 3]$ |
$[1]$ |
$\langle\frac{1}{2}\rangle$ |
$(1)$ |
$x^2 + a_{1} \pi x + c_{2} \pi^2 + \pi$ |
$4$ |
$3$ |
$3$ |
$3/8$ |
$3/8$ |
$100\%$ |
$1$ |
2.1.4.8b1.2-2.2.4a |
$2$ |
$4$ |
$4$ |
$16$ |
$2$ |
$1$ |
$2$ |
$2$ |
$4$ |
$8$ |
$4$ |
$8$ |
$14$ |
2.1.4.8b1.2 |
$[2, 2, 3]$ |
$[1]$ |
$\langle\frac{1}{2}\rangle$ |
$(1)$ |
$x^2 + a_{1} \pi x + c_{2} \pi^2 + \pi$ |
$4$ |
$3$ |
$3$ |
$3/8$ |
$3/8$ |
$100\%$ |
$1$ |
2.1.4.8b1.3-2.2.4a |
$2$ |
$4$ |
$4$ |
$16$ |
$2$ |
$1$ |
$2$ |
$2$ |
$4$ |
$8$ |
$4$ |
$8$ |
$14$ |
2.1.4.8b1.3 |
$[2, 2, 3]$ |
$[1]$ |
$\langle\frac{1}{2}\rangle$ |
$(1)$ |
$x^2 + a_{1} \pi x + c_{2} \pi^2 + \pi$ |
$4$ |
$3$ |
$3$ |
$3/4$ |
$3/8$ |
$50.00\%$ |
$1$ |
2.1.4.8b1.4-2.2.4a |
$2$ |
$4$ |
$4$ |
$16$ |
$2$ |
$1$ |
$2$ |
$2$ |
$4$ |
$8$ |
$4$ |
$8$ |
$14$ |
2.1.4.8b1.4 |
$[2, 2, 3]$ |
$[1]$ |
$\langle\frac{1}{2}\rangle$ |
$(1)$ |
$x^2 + a_{1} \pi x + c_{2} \pi^2 + \pi$ |
$4$ |
$3$ |
$3$ |
$3/4$ |
$3/8$ |
$50.00\%$ |
$1$ |
2.1.4.8b1.5-2.2.4a |
$2$ |
$4$ |
$4$ |
$16$ |
$2$ |
$1$ |
$2$ |
$2$ |
$4$ |
$8$ |
$4$ |
$8$ |
$14$ |
2.1.4.8b1.5 |
$[2, 2, 3]$ |
$[1]$ |
$\langle\frac{1}{2}\rangle$ |
$(1)$ |
$x^2 + a_{1} \pi x + c_{2} \pi^2 + \pi$ |
$4$ |
$3$ |
$3$ |
$3/8$ |
$3/8$ |
$100\%$ |
$1$ |
2.1.4.8b1.6-2.2.4a |
$2$ |
$4$ |
$4$ |
$16$ |
$2$ |
$1$ |
$2$ |
$2$ |
$4$ |
$8$ |
$4$ |
$8$ |
$14$ |
2.1.4.8b1.6 |
$[2, 2, 3]$ |
$[1]$ |
$\langle\frac{1}{2}\rangle$ |
$(1)$ |
$x^2 + a_{1} \pi x + c_{2} \pi^2 + \pi$ |
$4$ |
$3$ |
$3$ |
$3/8$ |
$3/8$ |
$100\%$ |
$1$ |
2.2.4.12a1.1-1.2.6a |
$2$ |
$2$ |
$8$ |
$16$ |
$1$ |
$2$ |
$2$ |
$2$ |
$4$ |
$8$ |
$6$ |
$12$ |
$9$ |
2.2.4.12a1.1 |
$[2, 2, 3]$ |
$[5]$ |
$\langle\frac{5}{2}\rangle$ |
$(5)$ |
$x^2 + (b_{9} \pi^5 + b_{7} \pi^4 + a_{5} \pi^3) x + c_{10} \pi^6 + \pi$ |
$2$ |
$24$ |
$48$ |
$6$ |
$6$ |
$100\%$ |
$1$ |
2.2.4.12a1.2-1.2.6a |
$2$ |
$2$ |
$8$ |
$16$ |
$1$ |
$2$ |
$2$ |
$2$ |
$4$ |
$8$ |
$6$ |
$12$ |
$9$ |
2.2.4.12a1.2 |
$[2, 2, 3]$ |
$[5]$ |
$\langle\frac{5}{2}\rangle$ |
$(5)$ |
$x^2 + (b_{9} \pi^5 + b_{7} \pi^4 + a_{5} \pi^3) x + c_{10} \pi^6 + \pi$ |
$2$ |
$42$ |
$48$ |
$12$ |
$12$ |
$100\%$ |
$1$ |
2.2.4.12a1.3-1.2.6a |
$2$ |
$2$ |
$8$ |
$16$ |
$1$ |
$2$ |
$2$ |
$2$ |
$4$ |
$8$ |
$6$ |
$12$ |
$9$ |
2.2.4.12a1.3 |
$[2, 2, 3]$ |
$[5]$ |
$\langle\frac{5}{2}\rangle$ |
$(5)$ |
$x^2 + (b_{9} \pi^5 + b_{7} \pi^4 + a_{5} \pi^3) x + c_{10} \pi^6 + \pi$ |
$2$ |
$24$ |
$48$ |
$6$ |
$6$ |
$100\%$ |
$1$ |
2.2.4.12a2.1-1.2.6a |
$2$ |
$2$ |
$8$ |
$16$ |
$1$ |
$2$ |
$2$ |
$2$ |
$4$ |
$8$ |
$6$ |
$12$ |
$9$ |
2.2.4.12a2.1 |
$[2, 2, 3]$ |
$[5]$ |
$\langle\frac{5}{2}\rangle$ |
$(5)$ |
$x^2 + (b_{9} \pi^5 + b_{7} \pi^4 + a_{5} \pi^3) x + c_{10} \pi^6 + \pi$ |
$2$ |
$96$ |
$48$ |
$48$ |
$48$ |
$100\%$ |
$1$ |
2.2.4.12a3.1-1.2.6a |
$2$ |
$2$ |
$8$ |
$16$ |
$1$ |
$2$ |
$2$ |
$2$ |
$4$ |
$8$ |
$6$ |
$12$ |
$9$ |
2.2.4.12a3.1 |
$[2, 2, 3]$ |
$[5]$ |
$\langle\frac{5}{2}\rangle$ |
$(5)$ |
$x^2 + (b_{9} \pi^5 + b_{7} \pi^4 + a_{5} \pi^3) x + c_{10} \pi^6 + \pi$ |
$2$ |
$52$ |
$48$ |
$24$ |
$24$ |
$100\%$ |
$1$ |
2.2.4.12a4.1-1.2.6a |
$2$ |
$2$ |
$8$ |
$16$ |
$1$ |
$2$ |
$2$ |
$2$ |
$4$ |
$8$ |
$6$ |
$12$ |
$9$ |
2.2.4.12a4.1 |
$[2, 2, 3]$ |
$[5]$ |
$\langle\frac{5}{2}\rangle$ |
$(5)$ |
$x^2 + (b_{9} \pi^5 + b_{7} \pi^4 + a_{5} \pi^3) x + c_{10} \pi^6 + \pi$ |
$2$ |
$60$ |
$48$ |
$24$ |
$24$ |
$100\%$ |
$1$ |
2.2.4.12a4.2-1.2.6a |
$2$ |
$2$ |
$8$ |
$16$ |
$1$ |
$2$ |
$2$ |
$2$ |
$4$ |
$8$ |
$6$ |
$12$ |
$9$ |
2.2.4.12a4.2 |
$[2, 2, 3]$ |
$[5]$ |
$\langle\frac{5}{2}\rangle$ |
$(5)$ |
$x^2 + (b_{9} \pi^5 + b_{7} \pi^4 + a_{5} \pi^3) x + c_{10} \pi^6 + \pi$ |
$2$ |
$60$ |
$48$ |
$24$ |
$24$ |
$100\%$ |
$1$ |
2.2.4.12a5.1-1.2.6a |
$2$ |
$2$ |
$8$ |
$16$ |
$1$ |
$2$ |
$2$ |
$2$ |
$4$ |
$8$ |
$6$ |
$12$ |
$9$ |
2.2.4.12a5.1 |
$[2, 2, 3]$ |
$[5]$ |
$\langle\frac{5}{2}\rangle$ |
$(5)$ |
$x^2 + (b_{9} \pi^5 + b_{7} \pi^4 + a_{5} \pi^3) x + c_{10} \pi^6 + \pi$ |
$2$ |
$96$ |
$48$ |
$48$ |
$48$ |
$100\%$ |
$1$ |
2.2.4.12a6.1-1.2.6a |
$2$ |
$2$ |
$8$ |
$16$ |
$1$ |
$2$ |
$2$ |
$2$ |
$4$ |
$8$ |
$6$ |
$12$ |
$9$ |
2.2.4.12a6.1 |
$[2, 2, 3]$ |
$[5]$ |
$\langle\frac{5}{2}\rangle$ |
$(5)$ |
$x^2 + (b_{9} \pi^5 + b_{7} \pi^4 + a_{5} \pi^3) x + c_{10} \pi^6 + \pi$ |
$2$ |
$60$ |
$48$ |
$24$ |
$24$ |
$100\%$ |
$1$ |
2.2.4.12a6.2-1.2.6a |
$2$ |
$2$ |
$8$ |
$16$ |
$1$ |
$2$ |
$2$ |
$2$ |
$4$ |
$8$ |
$6$ |
$12$ |
$9$ |
2.2.4.12a6.2 |
$[2, 2, 3]$ |
$[5]$ |
$\langle\frac{5}{2}\rangle$ |
$(5)$ |
$x^2 + (b_{9} \pi^5 + b_{7} \pi^4 + a_{5} \pi^3) x + c_{10} \pi^6 + \pi$ |
$2$ |
$60$ |
$48$ |
$24$ |
$24$ |
$100\%$ |
$1$ |
2.2.4.12a7.1-1.2.6a |
$2$ |
$2$ |
$8$ |
$16$ |
$1$ |
$2$ |
$2$ |
$2$ |
$4$ |
$8$ |
$6$ |
$12$ |
$9$ |
2.2.4.12a7.1 |
$[2, 2, 3]$ |
$[5]$ |
$\langle\frac{5}{2}\rangle$ |
$(5)$ |
$x^2 + (b_{9} \pi^5 + b_{7} \pi^4 + a_{5} \pi^3) x + c_{10} \pi^6 + \pi$ |
$2$ |
$60$ |
$48$ |
$24$ |
$24$ |
$100\%$ |
$1$ |
2.2.4.12a7.2-1.2.6a |
$2$ |
$2$ |
$8$ |
$16$ |
$1$ |
$2$ |
$2$ |
$2$ |
$4$ |
$8$ |
$6$ |
$12$ |
$9$ |
2.2.4.12a7.2 |
$[2, 2, 3]$ |
$[5]$ |
$\langle\frac{5}{2}\rangle$ |
$(5)$ |
$x^2 + (b_{9} \pi^5 + b_{7} \pi^4 + a_{5} \pi^3) x + c_{10} \pi^6 + \pi$ |
$2$ |
$60$ |
$48$ |
$24$ |
$24$ |
$100\%$ |
$1$ |
2.2.4.16b1.1-1.2.2a |
$2$ |
$2$ |
$8$ |
$16$ |
$1$ |
$2$ |
$2$ |
$2$ |
$4$ |
$8$ |
$2$ |
$16$ |
$7$ |
2.2.4.16b1.1 |
$[2, 2, 3]$ |
$[1]$ |
$\langle\frac{1}{2}\rangle$ |
$(1)$ |
$x^2 + a_{1} \pi x + c_{2} \pi^2 + \pi$ |
$2$ |
$3$ |
$3$ |
$3/8$ |
$3/8$ |
$100\%$ |
$1$ |
2.2.4.16b1.2-1.2.2a |
$2$ |
$2$ |
$8$ |
$16$ |
$1$ |
$2$ |
$2$ |
$2$ |
$4$ |
$8$ |
$2$ |
$16$ |
$7$ |
2.2.4.16b1.2 |
$[2, 2, 3]$ |
$[1]$ |
$\langle\frac{1}{2}\rangle$ |
$(1)$ |
$x^2 + a_{1} \pi x + c_{2} \pi^2 + \pi$ |
$2$ |
$3$ |
$3$ |
$3/8$ |
$3/8$ |
$100\%$ |
$1$ |
2.2.4.16b1.3-1.2.2a |
$2$ |
$2$ |
$8$ |
$16$ |
$1$ |
$2$ |
$2$ |
$2$ |
$4$ |
$8$ |
$2$ |
$16$ |
$7$ |
2.2.4.16b1.3 |
$[2, 2, 3]$ |
$[1]$ |
$\langle\frac{1}{2}\rangle$ |
$(1)$ |
$x^2 + a_{1} \pi x + c_{2} \pi^2 + \pi$ |
$2$ |
$6$ |
$3$ |
$3/2$ |
$5/4$ |
$83.33\%$ |
$1$ |
2.2.4.16b1.4-1.2.2a |
$2$ |
$2$ |
$8$ |
$16$ |
$1$ |
$2$ |
$2$ |
$2$ |
$4$ |
$8$ |
$2$ |
$16$ |
$7$ |
2.2.4.16b1.4 |
$[2, 2, 3]$ |
$[1]$ |
$\langle\frac{1}{2}\rangle$ |
$(1)$ |
$x^2 + a_{1} \pi x + c_{2} \pi^2 + \pi$ |
$2$ |
$3$ |
$3$ |
$3/8$ |
$3/8$ |
$100\%$ |
$1$ |
2.2.4.16b1.5-1.2.2a |
$2$ |
$2$ |
$8$ |
$16$ |
$1$ |
$2$ |
$2$ |
$2$ |
$4$ |
$8$ |
$2$ |
$16$ |
$7$ |
2.2.4.16b1.5 |
$[2, 2, 3]$ |
$[1]$ |
$\langle\frac{1}{2}\rangle$ |
$(1)$ |
$x^2 + a_{1} \pi x + c_{2} \pi^2 + \pi$ |
$2$ |
$3$ |
$3$ |
$3/8$ |
$3/8$ |
$100\%$ |
$1$ |
2.2.4.16b1.6-1.2.2a |
$2$ |
$2$ |
$8$ |
$16$ |
$1$ |
$2$ |
$2$ |
$2$ |
$4$ |
$8$ |
$2$ |
$16$ |
$7$ |
2.2.4.16b1.6 |
$[2, 2, 3]$ |
$[1]$ |
$\langle\frac{1}{2}\rangle$ |
$(1)$ |
$x^2 + a_{1} \pi x + c_{2} \pi^2 + \pi$ |
$2$ |
$5$ |
$3$ |
$3/2$ |
$5/4$ |
$83.33\%$ |
$1$ |
2.2.4.16b1.7-1.2.2a |
$2$ |
$2$ |
$8$ |
$16$ |
$1$ |
$2$ |
$2$ |
$2$ |
$4$ |
$8$ |
$2$ |
$16$ |
$7$ |
2.2.4.16b1.7 |
$[2, 2, 3]$ |
$[1]$ |
$\langle\frac{1}{2}\rangle$ |
$(1)$ |
$x^2 + a_{1} \pi x + c_{2} \pi^2 + \pi$ |
$2$ |
$4$ |
$3$ |
$3/4$ |
$3/4$ |
$100\%$ |
$1$ |
2.2.4.16b1.8-1.2.2a |
$2$ |
$2$ |
$8$ |
$16$ |
$1$ |
$2$ |
$2$ |
$2$ |
$4$ |
$8$ |
$2$ |
$16$ |
$7$ |
2.2.4.16b1.8 |
$[2, 2, 3]$ |
$[1]$ |
$\langle\frac{1}{2}\rangle$ |
$(1)$ |
$x^2 + a_{1} \pi x + c_{2} \pi^2 + \pi$ |
$2$ |
$2$ |
$3$ |
$3/8$ |
$3/8$ |
$100\%$ |
$1$ |
2.2.4.16b1.9-1.2.2a |
$2$ |
$2$ |
$8$ |
$16$ |
$1$ |
$2$ |
$2$ |
$2$ |
$4$ |
$8$ |
$2$ |
$16$ |
$7$ |
2.2.4.16b1.9 |
$[2, 2, 3]$ |
$[1]$ |
$\langle\frac{1}{2}\rangle$ |
$(1)$ |
$x^2 + a_{1} \pi x + c_{2} \pi^2 + \pi$ |
$2$ |
$2$ |
$3$ |
$3/8$ |
$3/8$ |
$100\%$ |
$1$ |
2.2.4.16b2.1-1.2.2a |
$2$ |
$2$ |
$8$ |
$16$ |
$1$ |
$2$ |
$2$ |
$2$ |
$4$ |
$8$ |
$2$ |
$16$ |
$7$ |
2.2.4.16b2.1 |
$[2, 2, 3]$ |
$[1]$ |
$\langle\frac{1}{2}\rangle$ |
$(1)$ |
$x^2 + a_{1} \pi x + c_{2} \pi^2 + \pi$ |
$2$ |
$4$ |
$3$ |
$3/4$ |
$3/4$ |
$100\%$ |
$1$ |
2.2.4.16b2.2-1.2.2a |
$2$ |
$2$ |
$8$ |
$16$ |
$1$ |
$2$ |
$2$ |
$2$ |
$4$ |
$8$ |
$2$ |
$16$ |
$7$ |
2.2.4.16b2.2 |
$[2, 2, 3]$ |
$[1]$ |
$\langle\frac{1}{2}\rangle$ |
$(1)$ |
$x^2 + a_{1} \pi x + c_{2} \pi^2 + \pi$ |
$2$ |
$4$ |
$3$ |
$3/4$ |
$3/4$ |
$100\%$ |
$1$ |