Properties

Label 2.2.4.16b1.9
Base \(\Q_{2}\)
Degree \(8\)
e \(4\)
f \(2\)
c \(16\)
Galois group $C_4\times C_2$ (as 8T2)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{2} + x + 1 )^{4} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{3} + 2 ( x^{2} + x + 1 )^{2} + 12 x + 2$ Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $8$
Ramification index $e$: $4$
Residue field degree $f$: $2$
Discriminant exponent $c$: $16$
Discriminant root field: $\Q_{2}$
Root number: $-1$
$\Aut(K/\Q_{2})$ $=$$\Gal(K/\Q_{2})$: $C_2\times C_4$
This field is Galois and abelian over $\Q_{2}.$
Visible Artin slopes:$[2, 3]$
Visible Swan slopes:$[1,2]$
Means:$\langle\frac{1}{2}, \frac{5}{4}\rangle$
Rams:$(1, 3)$
Jump set:$[1, 2, 8]$
Roots of unity:$6 = (2^{ 2 } - 1) \cdot 2$

Intermediate fields

$\Q_{2}(\sqrt{5})$, $\Q_{2}(\sqrt{2})$, $\Q_{2}(\sqrt{2\cdot 5})$, 2.2.2.4a1.2, 2.2.2.6a1.5, 2.2.2.6a1.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{2}(\sqrt{5})$ $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{2} + x + 1 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{4} + 4 t x^{3} + 2 x^{2} + 4 x + 12 t + 2 \) $\ \in\Q_{2}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^2 + 1$,$z + 1$
Associated inertia:$1$,$1$
Indices of inseparability:$[5, 2, 0]$

Invariants of the Galois closure

Galois degree: $8$
Galois group: $C_2\times C_4$ (as 8T2)
Inertia group: Intransitive group isomorphic to $C_2^2$
Wild inertia group: $C_2^2$
Galois unramified degree: $2$
Galois tame degree: $1$
Galois Artin slopes: $[2, 3]$
Galois Swan slopes: $[1,2]$
Galois mean slope: $2.0$
Galois splitting model:$x^{8} - 8 x^{6} + 19 x^{4} - 12 x^{2} + 1$