| $x^{2} + a_{1} \pi x + c_{2} \pi^{2} + \pi$ |
These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.
| Galois group: | $C_2^2.D_4$ (show 2), $C_2^4.D_4$ (show 2) |
| Hidden Artin slopes: | $[3]$ (show 2), $[2,3]^{2}$ (show 2) |
| Indices of inseparability: | $[11,6,4,0]$ (show 2), $[11,6,6,0]$ (show 2) |
| Associated inertia: | $[1,1]$ (show 2), $[2,1]$ (show 2) |
| Jump Set: | $[1,3,11,19]$ |
| Label |
Polynomial $/ \Q_p$ |
Galois group $/ \Q_p$ |
Galois degree $/ \Q_p$ |
$\#\Aut(K/\Q_p)$ |
Artin slope content $/ \Q_p$ |
Swan slope content $/ \Q_p$ |
Hidden Artin slopes $/ \Q_p$ |
Hidden Swan slopes $/ \Q_p$ |
Ind. of Insep. $/ \Q_p$ |
Assoc. Inertia $/ \Q_p$ |
Resid. Poly |
Jump Set |
| 2.2.8.36b2.12 |
$( x^{2} + x + 1 )^{8} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{7} + 2 ( x^{2} + x + 1 )^{6} + 4 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{3} + 10$ |
$C_2^2.D_4$ (as 16T54) |
$32$ |
$8$ |
$[2, 2, 3, 3]^{2}$ |
$[1,1,2,2]^{2}$ |
$[3]$ |
$[2]$ |
$[11, 6, 6, 0]$ |
$[1, 1]$ |
$z^6 + 1,z + t$ |
$[1, 3, 11, 19]$ |
| 2.2.8.36b2.39 |
$( x^{2} + x + 1 )^{8} + 4 ( x^{2} + x + 1 )^{7} + 2 ( x^{2} + x + 1 )^{6} + 4 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{3} + 14$ |
$C_2^2.D_4$ (as 16T54) |
$32$ |
$8$ |
$[2, 2, 3, 3]^{2}$ |
$[1,1,2,2]^{2}$ |
$[3]$ |
$[2]$ |
$[11, 6, 6, 0]$ |
$[1, 1]$ |
$z^6 + 1,z + t$ |
$[1, 3, 11, 19]$ |
| 2.2.8.36b14.5 |
$( x^{2} + x + 1 )^{8} + 6 ( x^{2} + x + 1 )^{7} + \left(2 x + 2\right) ( x^{2} + x + 1 )^{6} + 2 ( x^{2} + x + 1 )^{5} + 2 x ( x^{2} + x + 1 )^{4} + 4 ( x^{2} + x + 1 )^{3} + 10$ |
$C_2^4.D_4$ (as 16T274) |
$128$ |
$4$ |
$[2, 2, 2, 3, 3]^{4}$ |
$[1,1,1,2,2]^{4}$ |
$[2,3]^{2}$ |
$[1,2]^{2}$ |
$[11, 6, 4, 0]$ |
$[2, 1]$ |
$z^6 + t z^2 + t,t z + 1$ |
$[1, 3, 11, 19]$ |
| 2.2.8.36b15.8 |
$( x^{2} + x + 1 )^{8} + \left(4 x + 2\right) ( x^{2} + x + 1 )^{7} + \left(2 x + 2\right) ( x^{2} + x + 1 )^{6} + \left(4 x + 2\right) ( x^{2} + x + 1 )^{5} + 2 x ( x^{2} + x + 1 )^{4} + 4 x ( x^{2} + x + 1 )^{3} + 2$ |
$C_2^4.D_4$ (as 16T274) |
$128$ |
$4$ |
$[2, 2, 2, 3, 3]^{4}$ |
$[1,1,1,2,2]^{4}$ |
$[2,3]^{2}$ |
$[1,2]^{2}$ |
$[11, 6, 4, 0]$ |
$[2, 1]$ |
$z^6 + t z^2 + t,t z + t$ |
$[1, 3, 11, 19]$ |
Download
displayed columns for
results