Properties

Label 2.2.4.16b1.2-1.2.2a
Base 2.2.4.16b1.2
Degree \(2\)
e \(2\)
f \(1\)
c \(2\)

Related objects

Downloads

Learn more

Defining polynomial

$x^{2} + a_{1} \pi x + c_{2} \pi^{2} + \pi$

Invariants

Residue field characteristic: $2$
Degree: $2$
Base field: 2.2.4.16b1.2
Ramification index $e$: $2$
Residue field degree $f$: $1$
Discriminant exponent $c$: $2$
Absolute Artin slopes: $[2,2,3]$
Swan slopes: $[1]$
Means: $\langle\frac{1}{2}\rangle$
Rams: $(1)$
Field count: $3$ (complete)
Ambiguity: $2$
Mass: $3$
Absolute Mass: $3/8$

Diagrams

Varying

These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.

Galois group: $C_2^2 : C_4$ (show 2), $C_2^4:C_4$ (show 1)
Hidden Artin slopes: $[\ ]$ (show 2), $[2]^{2}$ (show 1)
Indices of inseparability: $[11,6,4,0]$ (show 1), $[11,6,6,0]$ (show 2)
Associated inertia: $[1,1]$ (show 2), $[2,1]$ (show 1)
Jump Set: $[1,3,16,24]$

Fields


Showing all 3

  displayed columns for results
Label Polynomial $/ \Q_p$ Galois group $/ \Q_p$ Galois degree $/ \Q_p$ $\#\Aut(K/\Q_p)$ Artin slope content $/ \Q_p$ Swan slope content $/ \Q_p$ Hidden Artin slopes $/ \Q_p$ Hidden Swan slopes $/ \Q_p$ Ind. of Insep. $/ \Q_p$ Assoc. Inertia $/ \Q_p$ Resid. Poly Jump Set
2.2.8.36b1.2 $( x^{2} + x + 1 )^{8} + 2 ( x^{2} + x + 1 )^{6} + 4 ( x^{2} + x + 1 )^{3} + 8 x + 2$ $C_2^2 : C_4$ (as 16T10) $16$ $16$ $[2, 2, 3]^{2}$ $[1,1,2]^{2}$ $[\ ]$ $[\ ]$ $[11, 6, 6, 0]$ $[1, 1]$ $z^6 + 1,z + 1$ $[1, 3, 16, 24]$
2.2.8.36b1.28 $( x^{2} + x + 1 )^{8} + 4 ( x^{2} + x + 1 )^{7} + 2 ( x^{2} + x + 1 )^{6} + 4 ( x^{2} + x + 1 )^{3} + 8 x + 6$ $C_2^2 : C_4$ (as 16T10) $16$ $16$ $[2, 2, 3]^{2}$ $[1,1,2]^{2}$ $[\ ]$ $[\ ]$ $[11, 6, 6, 0]$ $[1, 1]$ $z^6 + 1,z + 1$ $[1, 3, 16, 24]$
2.2.8.36b16.18 $( x^{2} + x + 1 )^{8} + \left(4 x + 2\right) ( x^{2} + x + 1 )^{7} + \left(2 x + 2\right) ( x^{2} + x + 1 )^{6} + \left(4 x + 6\right) ( x^{2} + x + 1 )^{5} + 2 x ( x^{2} + x + 1 )^{4} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{3} + 8 x + 2$ $C_2^4:C_4$ (as 16T78) $64$ $4$ $[2, 2, 2, 3]^{4}$ $[1,1,1,2]^{4}$ $[2]^{2}$ $[1]^{2}$ $[11, 6, 4, 0]$ $[2, 1]$ $z^6 + t z^2 + t,t z + (t + 1)$ $[1, 3, 16, 24]$
  displayed columns for results