Properties

Label 2.2.4.12a1.1
Base \(\Q_{2}\)
Degree \(8\)
e \(4\)
f \(2\)
c \(12\)
Galois group $D_4$ (as 8T4)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{2} + x + 1 )^{4} + 2 ( x^{2} + x + 1 )^{3} + 2$ Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $8$
Ramification index $e$: $4$
Residue field degree $f$: $2$
Discriminant exponent $c$: $12$
Discriminant root field: $\Q_{2}$
Root number: $1$
$\Aut(K/\Q_{2})$ $=$$\Gal(K/\Q_{2})$: $D_4$
This field is Galois over $\Q_{2}.$
Visible Artin slopes:$[2, 2]$
Visible Swan slopes:$[1,1]$
Means:$\langle\frac{1}{2}, \frac{3}{4}\rangle$
Rams:$(1, 1)$
Jump set:$[1, 3, 6]$
Roots of unity:$12 = (2^{ 2 } - 1) \cdot 2^{ 2 }$

Intermediate fields

$\Q_{2}(\sqrt{5})$, $\Q_{2}(\sqrt{-1})$, $\Q_{2}(\sqrt{-5})$, 2.2.2.4a1.1, 2.2.2.4a2.2 x2, 2.1.4.6a1.1 x2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{2}(\sqrt{5})$ $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{2} + x + 1 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{4} + 2 x^{3} + 2 \) $\ \in\Q_{2}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^3 + 1$
Associated inertia:$1$
Indices of inseparability:$[3, 3, 0]$

Invariants of the Galois closure

Galois degree: $8$
Galois group: $D_4$ (as 8T4)
Inertia group: Intransitive group isomorphic to $C_2^2$
Wild inertia group: $C_2^2$
Galois unramified degree: $2$
Galois tame degree: $1$
Galois Artin slopes: $[2, 2]$
Galois Swan slopes: $[1,1]$
Galois mean slope: $1.5$
Galois splitting model:$x^{8} - 2 x^{7} + 2 x^{6} + 2 x^{5} - 2 x^{4} + 2 x^{3} + 2 x^{2} - 2 x + 1$