Properties

Label 2.2.2.6a1.2
Base \(\Q_{2}\)
Degree \(4\)
e \(2\)
f \(2\)
c \(6\)
Galois group $C_4$ (as 4T1)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{2} + x + 1 )^{2} + 8 x + 2$ Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $4$
Ramification index $e$: $2$
Residue field degree $f$: $2$
Discriminant exponent $c$: $6$
Discriminant root field: $\Q_{2}(\sqrt{5})$
Root number: $-1$
$\Aut(K/\Q_{2})$ $=$$\Gal(K/\Q_{2})$: $C_4$
This field is Galois and abelian over $\Q_{2}.$
Visible Artin slopes:$[3]$
Visible Swan slopes:$[2]$
Means:$\langle1\rangle$
Rams:$(2)$
Jump set:$[1, 3]$
Roots of unity:$6 = (2^{ 2 } - 1) \cdot 2$

Intermediate fields

$\Q_{2}(\sqrt{5})$

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{2}(\sqrt{5})$ $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{2} + x + 1 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{2} + 8 t + 2 \) $\ \in\Q_{2}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z + 1$
Associated inertia:$1$
Indices of inseparability:$[2, 0]$

Invariants of the Galois closure

Galois degree: $4$
Galois group: $C_4$ (as 4T1)
Inertia group: Intransitive group isomorphic to $C_2$
Wild inertia group: $C_2$
Galois unramified degree: $2$
Galois tame degree: $1$
Galois Artin slopes: $[3]$
Galois Swan slopes: $[2]$
Galois mean slope: $1.5$
Galois splitting model:$x^{4} - 10 x^{2} + 20$