Label |
$p$ |
$n$ |
$n_0$ |
$n_{\mathrm{abs}}$ |
$f$ |
$f_0$ |
$f_{\mathrm{abs}}$ |
$e$ |
$e_0$ |
$e_{\mathrm{abs}}$ |
$c$ |
$c_0$ |
$c_{\mathrm{abs}}$ |
Base |
Abs. Artin slopes |
Swan slopes |
Means |
Rams |
Generic poly |
Ambiguity |
Field count |
Mass |
Mass (absolute) |
Mass stored |
Mass found |
Wild segments |
2.2.16.72j |
$2$ |
$32$ |
$1$ |
$32$ |
$2$ |
$1$ |
$2$ |
$16$ |
$1$ |
$16$ |
$72$ |
$0$ |
$72$ |
$\Q_{2}$ |
$[\frac{4}{3}, \frac{4}{3}, 2, 3]$ |
$[\frac{1}{3}, \frac{1}{3}, 1, 2]$ |
$\langle\frac{1}{6}, \frac{1}{4}, \frac{5}{8}, \frac{21}{16}\rangle$ |
$(\frac{1}{3}, \frac{1}{3}, 3, 11)$ |
$x^{16} + 4 b_{31} x^{15} + 2 b_{14} x^{14} + 4 b_{29} x^{13} + 4 b_{27} x^{11} + 2 a_{10} x^{10} + 4 b_{25} x^9 + 4 b_{23} x^7 + 4 a_{21} x^5 + 2 a_{4} x^4 + 4 c_{16} + 8 c_{32} + 2$ |
$8$ |
$0$ |
$110592$ |
$55296$ |
$0$ |
$0\%$ |
$3$ |
2.2.1.0a1.1-1.16.36j |
$2$ |
$16$ |
$2$ |
$32$ |
$1$ |
$2$ |
$2$ |
$16$ |
$1$ |
$16$ |
$36$ |
$0$ |
$36$ |
$\Q_{2}(\sqrt{5})$ |
$[\frac{4}{3}, \frac{4}{3}, 2, 3]$ |
$[\frac{1}{3}, \frac{1}{3}, 1, 2]$ |
$\langle\frac{1}{6}, \frac{1}{4}, \frac{5}{8}, \frac{21}{16}\rangle$ |
$(\frac{1}{3}, \frac{1}{3}, 3, 11)$ |
$x^{16} + 4 b_{31} x^{15} + 2 b_{14} x^{14} + 4 b_{29} x^{13} + 4 b_{27} x^{11} + 2 a_{10} x^{10} + 4 b_{25} x^9 + 4 b_{23} x^7 + 4 a_{21} x^5 + 2 a_{4} x^4 + 4 c_{16} + 8 c_{32} + 2$ |
$4$ |
$0$ |
$110592$ |
$55296$ |
$0$ |
$0\%$ |
$3$ |
2.1.2.2a1.1-2.8.40b |
$2$ |
$16$ |
$2$ |
$32$ |
$2$ |
$1$ |
$2$ |
$8$ |
$2$ |
$16$ |
$40$ |
$2$ |
$42$ |
$\Q_{2}(\sqrt{-1})$ |
$[\frac{4}{3}, \frac{4}{3}, 2, 3]$ |
$[\frac{1}{3}, \frac{1}{3}, 3]$ |
$\langle\frac{1}{6}, \frac{1}{4}, \frac{13}{8}\rangle$ |
$(\frac{1}{3}, \frac{1}{3}, 11)$ |
$x^8 + (b_{23} \pi^3 + b_{15} \pi^2) x^7 + (b_{21} \pi^3 + a_{13} \pi^2) x^5 + b_{19} \pi^3 x^3 + a_{2} \pi x^2 + b_{17} \pi^3 x + c_{24} \pi^4 + \pi$ |
$4$ |
$0$ |
$9216$ |
$2304$ |
$0$ |
$0\%$ |
$2$ |
2.1.2.2a1.2-2.8.40b |
$2$ |
$16$ |
$2$ |
$32$ |
$2$ |
$1$ |
$2$ |
$8$ |
$2$ |
$16$ |
$40$ |
$2$ |
$42$ |
$\Q_{2}(\sqrt{-5})$ |
$[\frac{4}{3}, \frac{4}{3}, 2, 3]$ |
$[\frac{1}{3}, \frac{1}{3}, 3]$ |
$\langle\frac{1}{6}, \frac{1}{4}, \frac{13}{8}\rangle$ |
$(\frac{1}{3}, \frac{1}{3}, 11)$ |
$x^8 + (b_{23} \pi^3 + b_{15} \pi^2) x^7 + (b_{21} \pi^3 + a_{13} \pi^2) x^5 + b_{19} \pi^3 x^3 + a_{2} \pi x^2 + b_{17} \pi^3 x + c_{24} \pi^4 + \pi$ |
$4$ |
$0$ |
$9216$ |
$2304$ |
$0$ |
$0\%$ |
$2$ |
2.1.2.3a1.1-2.8.24b |
$2$ |
$16$ |
$2$ |
$32$ |
$2$ |
$1$ |
$2$ |
$8$ |
$2$ |
$16$ |
$24$ |
$3$ |
$28$ |
$\Q_{2}(\sqrt{-2})$ |
$[\frac{4}{3}, \frac{4}{3}, 2, 3]$ |
$[\frac{1}{3}, \frac{1}{3}, 1]$ |
$\langle\frac{1}{6}, \frac{1}{4}, \frac{5}{8}\rangle$ |
$(\frac{1}{3}, \frac{1}{3}, 3)$ |
$x^8 + b_{7} \pi x^7 + a_{5} \pi x^5 + a_{2} \pi x^2 + c_{8} \pi^2 + \pi$ |
$4$ |
$0$ |
$36$ |
$9$ |
$0$ |
$0\%$ |
$2$ |
2.1.2.3a1.2-2.8.24b |
$2$ |
$16$ |
$2$ |
$32$ |
$2$ |
$1$ |
$2$ |
$8$ |
$2$ |
$16$ |
$24$ |
$3$ |
$28$ |
$\Q_{2}(\sqrt{-2\cdot 5})$ |
$[\frac{4}{3}, \frac{4}{3}, 2, 3]$ |
$[\frac{1}{3}, \frac{1}{3}, 1]$ |
$\langle\frac{1}{6}, \frac{1}{4}, \frac{5}{8}\rangle$ |
$(\frac{1}{3}, \frac{1}{3}, 3)$ |
$x^8 + b_{7} \pi x^7 + a_{5} \pi x^5 + a_{2} \pi x^2 + c_{8} \pi^2 + \pi$ |
$4$ |
$0$ |
$36$ |
$9$ |
$0$ |
$0\%$ |
$2$ |
2.1.2.3a1.3-2.8.24b |
$2$ |
$16$ |
$2$ |
$32$ |
$2$ |
$1$ |
$2$ |
$8$ |
$2$ |
$16$ |
$24$ |
$3$ |
$28$ |
$\Q_{2}(\sqrt{2})$ |
$[\frac{4}{3}, \frac{4}{3}, 2, 3]$ |
$[\frac{1}{3}, \frac{1}{3}, 1]$ |
$\langle\frac{1}{6}, \frac{1}{4}, \frac{5}{8}\rangle$ |
$(\frac{1}{3}, \frac{1}{3}, 3)$ |
$x^8 + b_{7} \pi x^7 + a_{5} \pi x^5 + a_{2} \pi x^2 + c_{8} \pi^2 + \pi$ |
$4$ |
$0$ |
$36$ |
$9$ |
$0$ |
$0\%$ |
$2$ |
2.1.2.3a1.4-2.8.24b |
$2$ |
$16$ |
$2$ |
$32$ |
$2$ |
$1$ |
$2$ |
$8$ |
$2$ |
$16$ |
$24$ |
$3$ |
$28$ |
$\Q_{2}(\sqrt{2\cdot 5})$ |
$[\frac{4}{3}, \frac{4}{3}, 2, 3]$ |
$[\frac{1}{3}, \frac{1}{3}, 1]$ |
$\langle\frac{1}{6}, \frac{1}{4}, \frac{5}{8}\rangle$ |
$(\frac{1}{3}, \frac{1}{3}, 3)$ |
$x^8 + b_{7} \pi x^7 + a_{5} \pi x^5 + a_{2} \pi x^2 + c_{8} \pi^2 + \pi$ |
$4$ |
$0$ |
$36$ |
$9$ |
$0$ |
$0\%$ |
$2$ |
2.2.2.4a1.1-1.8.20b |
$2$ |
$8$ |
$4$ |
$32$ |
$1$ |
$2$ |
$2$ |
$8$ |
$2$ |
$16$ |
$20$ |
$4$ |
$21$ |
2.2.2.4a1.1 |
$[\frac{4}{3}, \frac{4}{3}, 2, 3]$ |
$[\frac{1}{3}, \frac{1}{3}, 3]$ |
$\langle\frac{1}{6}, \frac{1}{4}, \frac{13}{8}\rangle$ |
$(\frac{1}{3}, \frac{1}{3}, 11)$ |
$x^8 + (b_{23} \pi^3 + b_{15} \pi^2) x^7 + (b_{21} \pi^3 + a_{13} \pi^2) x^5 + b_{19} \pi^3 x^3 + a_{2} \pi x^2 + b_{17} \pi^3 x + c_{24} \pi^4 + \pi$ |
$2$ |
$0$ |
$9216$ |
$2304$ |
$0$ |
$0\%$ |
$2$ |
2.2.2.4a1.2-1.8.20b |
$2$ |
$8$ |
$4$ |
$32$ |
$1$ |
$2$ |
$2$ |
$8$ |
$2$ |
$16$ |
$20$ |
$4$ |
$21$ |
2.2.2.4a1.2 |
$[\frac{4}{3}, \frac{4}{3}, 2, 3]$ |
$[\frac{1}{3}, \frac{1}{3}, 3]$ |
$\langle\frac{1}{6}, \frac{1}{4}, \frac{13}{8}\rangle$ |
$(\frac{1}{3}, \frac{1}{3}, 11)$ |
$x^8 + (b_{23} \pi^3 + b_{15} \pi^2) x^7 + (b_{21} \pi^3 + a_{13} \pi^2) x^5 + b_{19} \pi^3 x^3 + a_{2} \pi x^2 + b_{17} \pi^3 x + c_{24} \pi^4 + \pi$ |
$2$ |
$0$ |
$9216$ |
$2304$ |
$0$ |
$0\%$ |
$2$ |
2.2.2.4a2.1-1.8.20b |
$2$ |
$8$ |
$4$ |
$32$ |
$1$ |
$2$ |
$2$ |
$8$ |
$2$ |
$16$ |
$20$ |
$4$ |
$21$ |
2.2.2.4a2.1 |
$[\frac{4}{3}, \frac{4}{3}, 2, 3]$ |
$[\frac{1}{3}, \frac{1}{3}, 3]$ |
$\langle\frac{1}{6}, \frac{1}{4}, \frac{13}{8}\rangle$ |
$(\frac{1}{3}, \frac{1}{3}, 11)$ |
$x^8 + (b_{23} \pi^3 + b_{15} \pi^2) x^7 + (b_{21} \pi^3 + a_{13} \pi^2) x^5 + b_{19} \pi^3 x^3 + a_{2} \pi x^2 + b_{17} \pi^3 x + c_{24} \pi^4 + \pi$ |
$2$ |
$0$ |
$9216$ |
$4608$ |
$0$ |
$0\%$ |
$2$ |
2.2.2.4a2.2-1.8.20b |
$2$ |
$8$ |
$4$ |
$32$ |
$1$ |
$2$ |
$2$ |
$8$ |
$2$ |
$16$ |
$20$ |
$4$ |
$21$ |
2.2.2.4a2.2 |
$[\frac{4}{3}, \frac{4}{3}, 2, 3]$ |
$[\frac{1}{3}, \frac{1}{3}, 3]$ |
$\langle\frac{1}{6}, \frac{1}{4}, \frac{13}{8}\rangle$ |
$(\frac{1}{3}, \frac{1}{3}, 11)$ |
$x^8 + (b_{23} \pi^3 + b_{15} \pi^2) x^7 + (b_{21} \pi^3 + a_{13} \pi^2) x^5 + b_{19} \pi^3 x^3 + a_{2} \pi x^2 + b_{17} \pi^3 x + c_{24} \pi^4 + \pi$ |
$2$ |
$0$ |
$9216$ |
$4608$ |
$0$ |
$0\%$ |
$2$ |
2.2.2.6a1.1-1.8.12b |
$2$ |
$8$ |
$4$ |
$32$ |
$1$ |
$2$ |
$2$ |
$8$ |
$2$ |
$16$ |
$12$ |
$6$ |
$14$ |
2.2.2.6a1.1 |
$[\frac{4}{3}, \frac{4}{3}, 2, 3]$ |
$[\frac{1}{3}, \frac{1}{3}, 1]$ |
$\langle\frac{1}{6}, \frac{1}{4}, \frac{5}{8}\rangle$ |
$(\frac{1}{3}, \frac{1}{3}, 3)$ |
$x^8 + b_{7} \pi x^7 + a_{5} \pi x^5 + a_{2} \pi x^2 + c_{8} \pi^2 + \pi$ |
$2$ |
$0$ |
$36$ |
$9$ |
$0$ |
$0\%$ |
$2$ |
2.2.2.6a1.2-1.8.12b |
$2$ |
$8$ |
$4$ |
$32$ |
$1$ |
$2$ |
$2$ |
$8$ |
$2$ |
$16$ |
$12$ |
$6$ |
$14$ |
2.2.2.6a1.2 |
$[\frac{4}{3}, \frac{4}{3}, 2, 3]$ |
$[\frac{1}{3}, \frac{1}{3}, 1]$ |
$\langle\frac{1}{6}, \frac{1}{4}, \frac{5}{8}\rangle$ |
$(\frac{1}{3}, \frac{1}{3}, 3)$ |
$x^8 + b_{7} \pi x^7 + a_{5} \pi x^5 + a_{2} \pi x^2 + c_{8} \pi^2 + \pi$ |
$2$ |
$0$ |
$36$ |
$9$ |
$0$ |
$0\%$ |
$2$ |
2.2.2.6a1.3-1.8.12b |
$2$ |
$8$ |
$4$ |
$32$ |
$1$ |
$2$ |
$2$ |
$8$ |
$2$ |
$16$ |
$12$ |
$6$ |
$14$ |
2.2.2.6a1.3 |
$[\frac{4}{3}, \frac{4}{3}, 2, 3]$ |
$[\frac{1}{3}, \frac{1}{3}, 1]$ |
$\langle\frac{1}{6}, \frac{1}{4}, \frac{5}{8}\rangle$ |
$(\frac{1}{3}, \frac{1}{3}, 3)$ |
$x^8 + b_{7} \pi x^7 + a_{5} \pi x^5 + a_{2} \pi x^2 + c_{8} \pi^2 + \pi$ |
$2$ |
$0$ |
$36$ |
$18$ |
$0$ |
$0\%$ |
$2$ |
2.2.2.6a1.4-1.8.12b |
$2$ |
$8$ |
$4$ |
$32$ |
$1$ |
$2$ |
$2$ |
$8$ |
$2$ |
$16$ |
$12$ |
$6$ |
$14$ |
2.2.2.6a1.4 |
$[\frac{4}{3}, \frac{4}{3}, 2, 3]$ |
$[\frac{1}{3}, \frac{1}{3}, 1]$ |
$\langle\frac{1}{6}, \frac{1}{4}, \frac{5}{8}\rangle$ |
$(\frac{1}{3}, \frac{1}{3}, 3)$ |
$x^8 + b_{7} \pi x^7 + a_{5} \pi x^5 + a_{2} \pi x^2 + c_{8} \pi^2 + \pi$ |
$2$ |
$0$ |
$36$ |
$18$ |
$0$ |
$0\%$ |
$2$ |
2.2.2.6a1.5-1.8.12b |
$2$ |
$8$ |
$4$ |
$32$ |
$1$ |
$2$ |
$2$ |
$8$ |
$2$ |
$16$ |
$12$ |
$6$ |
$14$ |
2.2.2.6a1.5 |
$[\frac{4}{3}, \frac{4}{3}, 2, 3]$ |
$[\frac{1}{3}, \frac{1}{3}, 1]$ |
$\langle\frac{1}{6}, \frac{1}{4}, \frac{5}{8}\rangle$ |
$(\frac{1}{3}, \frac{1}{3}, 3)$ |
$x^8 + b_{7} \pi x^7 + a_{5} \pi x^5 + a_{2} \pi x^2 + c_{8} \pi^2 + \pi$ |
$2$ |
$0$ |
$36$ |
$9$ |
$0$ |
$0\%$ |
$2$ |
2.2.2.6a1.6-1.8.12b |
$2$ |
$8$ |
$4$ |
$32$ |
$1$ |
$2$ |
$2$ |
$8$ |
$2$ |
$16$ |
$12$ |
$6$ |
$14$ |
2.2.2.6a1.6 |
$[\frac{4}{3}, \frac{4}{3}, 2, 3]$ |
$[\frac{1}{3}, \frac{1}{3}, 1]$ |
$\langle\frac{1}{6}, \frac{1}{4}, \frac{5}{8}\rangle$ |
$(\frac{1}{3}, \frac{1}{3}, 3)$ |
$x^8 + b_{7} \pi x^7 + a_{5} \pi x^5 + a_{2} \pi x^2 + c_{8} \pi^2 + \pi$ |
$2$ |
$0$ |
$36$ |
$9$ |
$0$ |
$0\%$ |
$2$ |
2.1.4.4a1.1-2.4.40c |
$2$ |
$8$ |
$4$ |
$32$ |
$2$ |
$1$ |
$2$ |
$4$ |
$4$ |
$16$ |
$40$ |
$4$ |
$42$ |
2.1.4.4a1.1 |
$[\frac{4}{3}, \frac{4}{3}, 2, 3]$ |
$[3, 7]$ |
$\langle\frac{3}{2}, \frac{17}{4}\rangle$ |
$(3, 11)$ |
$x^4 + (b_{27} \pi^7 + b_{23} \pi^6 + b_{19} \pi^5) x^3 + (b_{10} \pi^3 + a_{6} \pi^2) x^2 + (b_{25} \pi^7 + b_{21} \pi^6 + a_{17} \pi^5) x + c_{28} \pi^8 + c_{12} \pi^4 + \pi$ |
$8$ |
$0$ |
$36864$ |
$18432$ |
$0$ |
$0\%$ |
$2$ |
2.1.4.8b1.1-2.4.8a |
$2$ |
$8$ |
$4$ |
$32$ |
$2$ |
$1$ |
$2$ |
$4$ |
$4$ |
$16$ |
$8$ |
$8$ |
$18$ |
2.1.4.8b1.1 |
$[\frac{4}{3}, \frac{4}{3}, 2, 3]$ |
$[\frac{1}{3}, \frac{1}{3}]$ |
$\langle\frac{1}{6}, \frac{1}{4}\rangle$ |
$(\frac{1}{3}, \frac{1}{3})$ |
$x^4 + a_{1} \pi x + \pi$ |
$2$ |
$0$ |
$3$ |
$3/8$ |
$0$ |
$0\%$ |
$1$ |
2.1.4.8b1.2-2.4.8a |
$2$ |
$8$ |
$4$ |
$32$ |
$2$ |
$1$ |
$2$ |
$4$ |
$4$ |
$16$ |
$8$ |
$8$ |
$18$ |
2.1.4.8b1.2 |
$[\frac{4}{3}, \frac{4}{3}, 2, 3]$ |
$[\frac{1}{3}, \frac{1}{3}]$ |
$\langle\frac{1}{6}, \frac{1}{4}\rangle$ |
$(\frac{1}{3}, \frac{1}{3})$ |
$x^4 + a_{1} \pi x + \pi$ |
$2$ |
$0$ |
$3$ |
$3/8$ |
$0$ |
$0\%$ |
$1$ |
2.1.4.8b1.3-2.4.8a |
$2$ |
$8$ |
$4$ |
$32$ |
$2$ |
$1$ |
$2$ |
$4$ |
$4$ |
$16$ |
$8$ |
$8$ |
$18$ |
2.1.4.8b1.3 |
$[\frac{4}{3}, \frac{4}{3}, 2, 3]$ |
$[\frac{1}{3}, \frac{1}{3}]$ |
$\langle\frac{1}{6}, \frac{1}{4}\rangle$ |
$(\frac{1}{3}, \frac{1}{3})$ |
$x^4 + a_{1} \pi x + \pi$ |
$2$ |
$0$ |
$3$ |
$3/4$ |
$0$ |
$0\%$ |
$1$ |
2.1.4.8b1.4-2.4.8a |
$2$ |
$8$ |
$4$ |
$32$ |
$2$ |
$1$ |
$2$ |
$4$ |
$4$ |
$16$ |
$8$ |
$8$ |
$18$ |
2.1.4.8b1.4 |
$[\frac{4}{3}, \frac{4}{3}, 2, 3]$ |
$[\frac{1}{3}, \frac{1}{3}]$ |
$\langle\frac{1}{6}, \frac{1}{4}\rangle$ |
$(\frac{1}{3}, \frac{1}{3})$ |
$x^4 + a_{1} \pi x + \pi$ |
$2$ |
$0$ |
$3$ |
$3/4$ |
$0$ |
$0\%$ |
$1$ |
2.1.4.8b1.5-2.4.8a |
$2$ |
$8$ |
$4$ |
$32$ |
$2$ |
$1$ |
$2$ |
$4$ |
$4$ |
$16$ |
$8$ |
$8$ |
$18$ |
2.1.4.8b1.5 |
$[\frac{4}{3}, \frac{4}{3}, 2, 3]$ |
$[\frac{1}{3}, \frac{1}{3}]$ |
$\langle\frac{1}{6}, \frac{1}{4}\rangle$ |
$(\frac{1}{3}, \frac{1}{3})$ |
$x^4 + a_{1} \pi x + \pi$ |
$2$ |
$0$ |
$3$ |
$3/8$ |
$0$ |
$0\%$ |
$1$ |
2.1.4.8b1.6-2.4.8a |
$2$ |
$8$ |
$4$ |
$32$ |
$2$ |
$1$ |
$2$ |
$4$ |
$4$ |
$16$ |
$8$ |
$8$ |
$18$ |
2.1.4.8b1.6 |
$[\frac{4}{3}, \frac{4}{3}, 2, 3]$ |
$[\frac{1}{3}, \frac{1}{3}]$ |
$\langle\frac{1}{6}, \frac{1}{4}\rangle$ |
$(\frac{1}{3}, \frac{1}{3})$ |
$x^4 + a_{1} \pi x + \pi$ |
$2$ |
$0$ |
$3$ |
$3/8$ |
$0$ |
$0\%$ |
$1$ |
2.2.4.8a1.1-1.4.20c |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$2$ |
$2$ |
$4$ |
$4$ |
$16$ |
$20$ |
$8$ |
$21$ |
2.2.4.8a1.1 |
$[\frac{4}{3}, \frac{4}{3}, 2, 3]$ |
$[3, 7]$ |
$\langle\frac{3}{2}, \frac{17}{4}\rangle$ |
$(3, 11)$ |
$x^4 + (b_{27} \pi^7 + b_{23} \pi^6 + b_{19} \pi^5) x^3 + (b_{10} \pi^3 + a_{6} \pi^2) x^2 + (b_{25} \pi^7 + b_{21} \pi^6 + a_{17} \pi^5) x + c_{28} \pi^8 + c_{12} \pi^4 + \pi$ |
$4$ |
$0$ |
$36864$ |
$18432$ |
$0$ |
$0\%$ |
$2$ |
2.2.4.8a2.1-1.4.20c |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$2$ |
$2$ |
$4$ |
$4$ |
$16$ |
$20$ |
$8$ |
$21$ |
2.2.4.8a2.1 |
$[\frac{4}{3}, \frac{4}{3}, 2, 3]$ |
$[3, 7]$ |
$\langle\frac{3}{2}, \frac{17}{4}\rangle$ |
$(3, 11)$ |
$x^4 + (b_{27} \pi^7 + b_{23} \pi^6 + b_{19} \pi^5) x^3 + (b_{10} \pi^3 + a_{6} \pi^2) x^2 + (b_{25} \pi^7 + b_{21} \pi^6 + a_{17} \pi^5) x + c_{28} \pi^8 + c_{12} \pi^4 + \pi$ |
$4$ |
$0$ |
$36864$ |
$36864$ |
$0$ |
$0\%$ |
$2$ |
2.2.4.16b1.1-1.4.4a |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$2$ |
$2$ |
$4$ |
$4$ |
$16$ |
$4$ |
$16$ |
$9$ |
2.2.4.16b1.1 |
$[\frac{4}{3}, \frac{4}{3}, 2, 3]$ |
$[\frac{1}{3}, \frac{1}{3}]$ |
$\langle\frac{1}{6}, \frac{1}{4}\rangle$ |
$(\frac{1}{3}, \frac{1}{3})$ |
$x^4 + a_{1} \pi x + \pi$ |
$1$ |
$0$ |
$3$ |
$3/8$ |
$0$ |
$0\%$ |
$1$ |
2.2.4.16b1.2-1.4.4a |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$2$ |
$2$ |
$4$ |
$4$ |
$16$ |
$4$ |
$16$ |
$9$ |
2.2.4.16b1.2 |
$[\frac{4}{3}, \frac{4}{3}, 2, 3]$ |
$[\frac{1}{3}, \frac{1}{3}]$ |
$\langle\frac{1}{6}, \frac{1}{4}\rangle$ |
$(\frac{1}{3}, \frac{1}{3})$ |
$x^4 + a_{1} \pi x + \pi$ |
$1$ |
$0$ |
$3$ |
$3/8$ |
$0$ |
$0\%$ |
$1$ |
2.2.4.16b1.3-1.4.4a |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$2$ |
$2$ |
$4$ |
$4$ |
$16$ |
$4$ |
$16$ |
$9$ |
2.2.4.16b1.3 |
$[\frac{4}{3}, \frac{4}{3}, 2, 3]$ |
$[\frac{1}{3}, \frac{1}{3}]$ |
$\langle\frac{1}{6}, \frac{1}{4}\rangle$ |
$(\frac{1}{3}, \frac{1}{3})$ |
$x^4 + a_{1} \pi x + \pi$ |
$1$ |
$0$ |
$3$ |
$3/2$ |
$0$ |
$0\%$ |
$1$ |
2.2.4.16b1.4-1.4.4a |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$2$ |
$2$ |
$4$ |
$4$ |
$16$ |
$4$ |
$16$ |
$9$ |
2.2.4.16b1.4 |
$[\frac{4}{3}, \frac{4}{3}, 2, 3]$ |
$[\frac{1}{3}, \frac{1}{3}]$ |
$\langle\frac{1}{6}, \frac{1}{4}\rangle$ |
$(\frac{1}{3}, \frac{1}{3})$ |
$x^4 + a_{1} \pi x + \pi$ |
$1$ |
$0$ |
$3$ |
$3/8$ |
$0$ |
$0\%$ |
$1$ |
2.2.4.16b1.5-1.4.4a |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$2$ |
$2$ |
$4$ |
$4$ |
$16$ |
$4$ |
$16$ |
$9$ |
2.2.4.16b1.5 |
$[\frac{4}{3}, \frac{4}{3}, 2, 3]$ |
$[\frac{1}{3}, \frac{1}{3}]$ |
$\langle\frac{1}{6}, \frac{1}{4}\rangle$ |
$(\frac{1}{3}, \frac{1}{3})$ |
$x^4 + a_{1} \pi x + \pi$ |
$1$ |
$0$ |
$3$ |
$3/8$ |
$0$ |
$0\%$ |
$1$ |
2.2.4.16b1.6-1.4.4a |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$2$ |
$2$ |
$4$ |
$4$ |
$16$ |
$4$ |
$16$ |
$9$ |
2.2.4.16b1.6 |
$[\frac{4}{3}, \frac{4}{3}, 2, 3]$ |
$[\frac{1}{3}, \frac{1}{3}]$ |
$\langle\frac{1}{6}, \frac{1}{4}\rangle$ |
$(\frac{1}{3}, \frac{1}{3})$ |
$x^4 + a_{1} \pi x + \pi$ |
$1$ |
$0$ |
$3$ |
$3/2$ |
$0$ |
$0\%$ |
$1$ |
2.2.4.16b1.7-1.4.4a |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$2$ |
$2$ |
$4$ |
$4$ |
$16$ |
$4$ |
$16$ |
$9$ |
2.2.4.16b1.7 |
$[\frac{4}{3}, \frac{4}{3}, 2, 3]$ |
$[\frac{1}{3}, \frac{1}{3}]$ |
$\langle\frac{1}{6}, \frac{1}{4}\rangle$ |
$(\frac{1}{3}, \frac{1}{3})$ |
$x^4 + a_{1} \pi x + \pi$ |
$1$ |
$0$ |
$3$ |
$3/4$ |
$0$ |
$0\%$ |
$1$ |
2.2.4.16b1.8-1.4.4a |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$2$ |
$2$ |
$4$ |
$4$ |
$16$ |
$4$ |
$16$ |
$9$ |
2.2.4.16b1.8 |
$[\frac{4}{3}, \frac{4}{3}, 2, 3]$ |
$[\frac{1}{3}, \frac{1}{3}]$ |
$\langle\frac{1}{6}, \frac{1}{4}\rangle$ |
$(\frac{1}{3}, \frac{1}{3})$ |
$x^4 + a_{1} \pi x + \pi$ |
$1$ |
$0$ |
$3$ |
$3/8$ |
$0$ |
$0\%$ |
$1$ |
2.2.4.16b1.9-1.4.4a |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$2$ |
$2$ |
$4$ |
$4$ |
$16$ |
$4$ |
$16$ |
$9$ |
2.2.4.16b1.9 |
$[\frac{4}{3}, \frac{4}{3}, 2, 3]$ |
$[\frac{1}{3}, \frac{1}{3}]$ |
$\langle\frac{1}{6}, \frac{1}{4}\rangle$ |
$(\frac{1}{3}, \frac{1}{3})$ |
$x^4 + a_{1} \pi x + \pi$ |
$1$ |
$0$ |
$3$ |
$3/8$ |
$0$ |
$0\%$ |
$1$ |
2.2.4.16b2.1-1.4.4a |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$2$ |
$2$ |
$4$ |
$4$ |
$16$ |
$4$ |
$16$ |
$9$ |
2.2.4.16b2.1 |
$[\frac{4}{3}, \frac{4}{3}, 2, 3]$ |
$[\frac{1}{3}, \frac{1}{3}]$ |
$\langle\frac{1}{6}, \frac{1}{4}\rangle$ |
$(\frac{1}{3}, \frac{1}{3})$ |
$x^4 + a_{1} \pi x + \pi$ |
$1$ |
$0$ |
$3$ |
$3/4$ |
$0$ |
$0\%$ |
$1$ |
2.2.4.16b2.2-1.4.4a |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$2$ |
$2$ |
$4$ |
$4$ |
$16$ |
$4$ |
$16$ |
$9$ |
2.2.4.16b2.2 |
$[\frac{4}{3}, \frac{4}{3}, 2, 3]$ |
$[\frac{1}{3}, \frac{1}{3}]$ |
$\langle\frac{1}{6}, \frac{1}{4}\rangle$ |
$(\frac{1}{3}, \frac{1}{3})$ |
$x^4 + a_{1} \pi x + \pi$ |
$1$ |
$0$ |
$3$ |
$3/4$ |
$0$ |
$0\%$ |
$1$ |
2.2.4.16b2.3-1.4.4a |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$2$ |
$2$ |
$4$ |
$4$ |
$16$ |
$4$ |
$16$ |
$9$ |
2.2.4.16b2.3 |
$[\frac{4}{3}, \frac{4}{3}, 2, 3]$ |
$[\frac{1}{3}, \frac{1}{3}]$ |
$\langle\frac{1}{6}, \frac{1}{4}\rangle$ |
$(\frac{1}{3}, \frac{1}{3})$ |
$x^4 + a_{1} \pi x + \pi$ |
$1$ |
$0$ |
$3$ |
$3/2$ |
$0$ |
$0\%$ |
$1$ |
2.2.4.16b2.4-1.4.4a |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$2$ |
$2$ |
$4$ |
$4$ |
$16$ |
$4$ |
$16$ |
$9$ |
2.2.4.16b2.4 |
$[\frac{4}{3}, \frac{4}{3}, 2, 3]$ |
$[\frac{1}{3}, \frac{1}{3}]$ |
$\langle\frac{1}{6}, \frac{1}{4}\rangle$ |
$(\frac{1}{3}, \frac{1}{3})$ |
$x^4 + a_{1} \pi x + \pi$ |
$1$ |
$0$ |
$3$ |
$3/2$ |
$0$ |
$0\%$ |
$1$ |
2.2.4.16b2.5-1.4.4a |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$2$ |
$2$ |
$4$ |
$4$ |
$16$ |
$4$ |
$16$ |
$9$ |
2.2.4.16b2.5 |
$[\frac{4}{3}, \frac{4}{3}, 2, 3]$ |
$[\frac{1}{3}, \frac{1}{3}]$ |
$\langle\frac{1}{6}, \frac{1}{4}\rangle$ |
$(\frac{1}{3}, \frac{1}{3})$ |
$x^4 + a_{1} \pi x + \pi$ |
$1$ |
$0$ |
$3$ |
$3/4$ |
$0$ |
$0\%$ |
$1$ |
2.2.4.16b2.6-1.4.4a |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$2$ |
$2$ |
$4$ |
$4$ |
$16$ |
$4$ |
$16$ |
$9$ |
2.2.4.16b2.6 |
$[\frac{4}{3}, \frac{4}{3}, 2, 3]$ |
$[\frac{1}{3}, \frac{1}{3}]$ |
$\langle\frac{1}{6}, \frac{1}{4}\rangle$ |
$(\frac{1}{3}, \frac{1}{3})$ |
$x^4 + a_{1} \pi x + \pi$ |
$1$ |
$0$ |
$3$ |
$3/4$ |
$0$ |
$0\%$ |
$1$ |
2.2.4.16b2.7-1.4.4a |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$2$ |
$2$ |
$4$ |
$4$ |
$16$ |
$4$ |
$16$ |
$9$ |
2.2.4.16b2.7 |
$[\frac{4}{3}, \frac{4}{3}, 2, 3]$ |
$[\frac{1}{3}, \frac{1}{3}]$ |
$\langle\frac{1}{6}, \frac{1}{4}\rangle$ |
$(\frac{1}{3}, \frac{1}{3})$ |
$x^4 + a_{1} \pi x + \pi$ |
$1$ |
$0$ |
$3$ |
$3/4$ |
$0$ |
$0\%$ |
$1$ |
2.2.4.16b2.8-1.4.4a |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$2$ |
$2$ |
$4$ |
$4$ |
$16$ |
$4$ |
$16$ |
$9$ |
2.2.4.16b2.8 |
$[\frac{4}{3}, \frac{4}{3}, 2, 3]$ |
$[\frac{1}{3}, \frac{1}{3}]$ |
$\langle\frac{1}{6}, \frac{1}{4}\rangle$ |
$(\frac{1}{3}, \frac{1}{3})$ |
$x^4 + a_{1} \pi x + \pi$ |
$1$ |
$0$ |
$3$ |
$3/4$ |
$0$ |
$0\%$ |
$1$ |
2.2.4.16b2.9-1.4.4a |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$2$ |
$2$ |
$4$ |
$4$ |
$16$ |
$4$ |
$16$ |
$9$ |
2.2.4.16b2.9 |
$[\frac{4}{3}, \frac{4}{3}, 2, 3]$ |
$[\frac{1}{3}, \frac{1}{3}]$ |
$\langle\frac{1}{6}, \frac{1}{4}\rangle$ |
$(\frac{1}{3}, \frac{1}{3})$ |
$x^4 + a_{1} \pi x + \pi$ |
$1$ |
$0$ |
$3$ |
$3/2$ |
$0$ |
$0\%$ |
$1$ |
2.2.4.16b2.10-1.4.4a |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$2$ |
$2$ |
$4$ |
$4$ |
$16$ |
$4$ |
$16$ |
$9$ |
2.2.4.16b2.10 |
$[\frac{4}{3}, \frac{4}{3}, 2, 3]$ |
$[\frac{1}{3}, \frac{1}{3}]$ |
$\langle\frac{1}{6}, \frac{1}{4}\rangle$ |
$(\frac{1}{3}, \frac{1}{3})$ |
$x^4 + a_{1} \pi x + \pi$ |
$1$ |
$0$ |
$3$ |
$3/2$ |
$0$ |
$0\%$ |
$1$ |
2.2.4.16b2.11-1.4.4a |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$2$ |
$2$ |
$4$ |
$4$ |
$16$ |
$4$ |
$16$ |
$9$ |
2.2.4.16b2.11 |
$[\frac{4}{3}, \frac{4}{3}, 2, 3]$ |
$[\frac{1}{3}, \frac{1}{3}]$ |
$\langle\frac{1}{6}, \frac{1}{4}\rangle$ |
$(\frac{1}{3}, \frac{1}{3})$ |
$x^4 + a_{1} \pi x + \pi$ |
$1$ |
$0$ |
$3$ |
$3/4$ |
$0$ |
$0\%$ |
$1$ |
2.2.4.16b2.12-1.4.4a |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$2$ |
$2$ |
$4$ |
$4$ |
$16$ |
$4$ |
$16$ |
$9$ |
2.2.4.16b2.12 |
$[\frac{4}{3}, \frac{4}{3}, 2, 3]$ |
$[\frac{1}{3}, \frac{1}{3}]$ |
$\langle\frac{1}{6}, \frac{1}{4}\rangle$ |
$(\frac{1}{3}, \frac{1}{3})$ |
$x^4 + a_{1} \pi x + \pi$ |
$1$ |
$0$ |
$3$ |
$3/4$ |
$0$ |
$0\%$ |
$1$ |
2.2.4.16b3.1-1.4.4a |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$2$ |
$2$ |
$4$ |
$4$ |
$16$ |
$4$ |
$16$ |
$9$ |
2.2.4.16b3.1 |
$[\frac{4}{3}, \frac{4}{3}, 2, 3]$ |
$[\frac{1}{3}, \frac{1}{3}]$ |
$\langle\frac{1}{6}, \frac{1}{4}\rangle$ |
$(\frac{1}{3}, \frac{1}{3})$ |
$x^4 + a_{1} \pi x + \pi$ |
$1$ |
$0$ |
$3$ |
$3/2$ |
$0$ |
$0\%$ |
$1$ |
2.2.4.16b3.2-1.4.4a |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$2$ |
$2$ |
$4$ |
$4$ |
$16$ |
$4$ |
$16$ |
$9$ |
2.2.4.16b3.2 |
$[\frac{4}{3}, \frac{4}{3}, 2, 3]$ |
$[\frac{1}{3}, \frac{1}{3}]$ |
$\langle\frac{1}{6}, \frac{1}{4}\rangle$ |
$(\frac{1}{3}, \frac{1}{3})$ |
$x^4 + a_{1} \pi x + \pi$ |
$1$ |
$0$ |
$3$ |
$3/2$ |
$0$ |
$0\%$ |
$1$ |