Defining polynomial over unramified subextension
$x^{8} + b_{7} \pi x^{7} + a_{5} \pi x^{5} + a_{2} \pi x^{2} + c_{8} \pi^{2} + \pi$ |
Invariants
Residue field characteristic: | $2$ |
Degree: | $16$ |
Base field: | $\Q_{2}(\sqrt{-2})$ |
Ramification index $e$: | $8$ |
Residue field degree $f$: | $2$ |
Discriminant exponent $c$: | $24$ |
Absolute Artin slopes: | $[\frac{4}{3},\frac{4}{3},2,3]$ |
Swan slopes: | $[\frac{1}{3},\frac{1}{3},1]$ |
Means: | $\langle\frac{1}{6},\frac{1}{4},\frac{5}{8}\rangle$ |
Rams: | $(\frac{1}{3},\frac{1}{3},3)$ |
Field count: | $0$ (incomplete) |
Ambiguity: | $4$ |
Mass: | $36$ |
Absolute Mass: | $9$ ($0$ currently in the LMFDB) |
Diagrams
The LMFDB does not contain any fields from this family.