Defining polynomial over unramified subextension
$x^{4} + \left(b_{27} \pi^{7} + b_{23} \pi^{6} + b_{19} \pi^{5}\right) x^{3} + \left(b_{10} \pi^{3} + a_{6} \pi^{2}\right) x^{2} + \left(b_{25} \pi^{7} + b_{21} \pi^{6} + a_{17} \pi^{5}\right) x + c_{28} \pi^{8} + c_{12} \pi^{4} + \pi$ |
Invariants
Residue field characteristic: | $2$ |
Degree: | $8$ |
Base field: | 2.1.4.4a1.1 |
Ramification index $e$: | $4$ |
Residue field degree $f$: | $2$ |
Discriminant exponent $c$: | $40$ |
Absolute Artin slopes: | $[\frac{4}{3},\frac{4}{3},2,3]$ |
Swan slopes: | $[3,7]$ |
Means: | $\langle\frac{3}{2},\frac{17}{4}\rangle$ |
Rams: | $(3,11)$ |
Field count: | $0$ (incomplete) |
Ambiguity: | $8$ |
Mass: | $36864$ |
Absolute Mass: | $18432$ ($0$ currently in the LMFDB) |
Diagrams
The LMFDB does not contain any fields from this family.