Normalized defining polynomial
\( x^{30} + 6 x^{28} - x^{27} + 14 x^{26} - x^{25} + 8 x^{24} + 13 x^{23} - 39 x^{22} + 37 x^{21} - 93 x^{20} + 30 x^{19} + 10 x^{18} - 13 x^{17} + 349 x^{16} + 77 x^{15} + 721 x^{14} + 575 x^{13} + 1026 x^{12} + 1233 x^{11} + 1137 x^{10} + 993 x^{9} + 501 x^{8} - 41 x^{7} - 253 x^{6} - 186 x^{5} - 58 x^{4} + 6 x^{3} + 14 x^{2} + 6 x + 1 \)
Invariants
Degree: | $30$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[0, 15]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(-45711723244122563996456104229882472771\)\(\medspace = -\,3^{20}\cdot 11^{27}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $18.00$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $3, 11$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $15$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $\frac{1}{445} a^{25} + \frac{11}{445} a^{24} - \frac{219}{445} a^{23} + \frac{86}{445} a^{22} + \frac{39}{89} a^{21} + \frac{186}{445} a^{20} + \frac{82}{445} a^{19} - \frac{26}{89} a^{18} + \frac{203}{445} a^{17} + \frac{153}{445} a^{16} + \frac{167}{445} a^{15} + \frac{169}{445} a^{14} + \frac{23}{89} a^{13} - \frac{34}{89} a^{12} + \frac{51}{445} a^{11} - \frac{167}{445} a^{10} - \frac{164}{445} a^{9} - \frac{25}{89} a^{8} - \frac{10}{89} a^{7} + \frac{84}{445} a^{6} - \frac{4}{445} a^{5} + \frac{212}{445} a^{4} + \frac{18}{89} a^{3} - \frac{32}{89} a^{2} + \frac{18}{445} a + \frac{152}{445}$, $\frac{1}{445} a^{26} + \frac{21}{89} a^{24} - \frac{35}{89} a^{23} + \frac{139}{445} a^{22} - \frac{179}{445} a^{21} - \frac{184}{445} a^{20} - \frac{142}{445} a^{19} - \frac{147}{445} a^{18} + \frac{29}{89} a^{17} - \frac{181}{445} a^{16} + \frac{112}{445} a^{15} + \frac{36}{445} a^{14} - \frac{20}{89} a^{13} + \frac{141}{445} a^{12} + \frac{162}{445} a^{11} - \frac{107}{445} a^{10} - \frac{101}{445} a^{9} - \frac{2}{89} a^{8} + \frac{189}{445} a^{7} - \frac{38}{445} a^{6} - \frac{189}{445} a^{5} - \frac{17}{445} a^{4} + \frac{37}{89} a^{3} - \frac{2}{445} a^{2} - \frac{46}{445} a + \frac{108}{445}$, $\frac{1}{445} a^{27} + \frac{1}{89} a^{24} - \frac{6}{445} a^{23} + \frac{136}{445} a^{22} - \frac{189}{445} a^{21} - \frac{92}{445} a^{20} + \frac{143}{445} a^{19} - \frac{136}{445} a^{17} + \frac{67}{445} a^{16} - \frac{144}{445} a^{15} - \frac{9}{89} a^{14} + \frac{81}{445} a^{13} + \frac{212}{445} a^{12} - \frac{122}{445} a^{11} + \frac{79}{445} a^{10} - \frac{29}{89} a^{9} - \frac{36}{445} a^{8} - \frac{128}{445} a^{7} - \frac{109}{445} a^{6} - \frac{42}{445} a^{5} + \frac{35}{89} a^{4} - \frac{107}{445} a^{3} - \frac{156}{445} a^{2} - \frac{2}{445} a + \frac{12}{89}$, $\frac{1}{13387012429555} a^{28} + \frac{11292184506}{13387012429555} a^{27} + \frac{239979340}{2677402485911} a^{26} - \frac{11621511658}{13387012429555} a^{25} - \frac{4902792104044}{13387012429555} a^{24} - \frac{6166493836393}{13387012429555} a^{23} - \frac{5758271901301}{13387012429555} a^{22} - \frac{1341906105356}{13387012429555} a^{21} - \frac{5466840494667}{13387012429555} a^{20} + \frac{6444606444167}{13387012429555} a^{19} + \frac{6175612326114}{13387012429555} a^{18} - \frac{1231175297543}{13387012429555} a^{17} + \frac{1579876048774}{13387012429555} a^{16} - \frac{896338943675}{2677402485911} a^{15} + \frac{4836948846369}{13387012429555} a^{14} + \frac{4601689343788}{13387012429555} a^{13} - \frac{511854111159}{2677402485911} a^{12} - \frac{5347110096196}{13387012429555} a^{11} - \frac{991991156498}{2677402485911} a^{10} - \frac{2241961602974}{13387012429555} a^{9} + \frac{2053307832501}{13387012429555} a^{8} - \frac{759610988112}{13387012429555} a^{7} + \frac{4602001636602}{13387012429555} a^{6} - \frac{848191643384}{2677402485911} a^{5} - \frac{606966174518}{13387012429555} a^{4} - \frac{1820764963473}{13387012429555} a^{3} + \frac{589929716967}{13387012429555} a^{2} - \frac{3254376689291}{13387012429555} a - \frac{2112461484861}{13387012429555}$, $\frac{1}{13387012429555} a^{29} + \frac{1002026522}{2677402485911} a^{27} + \frac{14689278362}{13387012429555} a^{26} + \frac{13605534833}{13387012429555} a^{25} + \frac{324983930549}{2677402485911} a^{24} + \frac{682285836191}{2677402485911} a^{23} - \frac{1164366560091}{2677402485911} a^{22} - \frac{1045981908}{2677402485911} a^{21} + \frac{4249606413601}{13387012429555} a^{20} + \frac{3656525880493}{13387012429555} a^{19} + \frac{1039894128888}{13387012429555} a^{18} - \frac{5903150631877}{13387012429555} a^{17} - \frac{326707186607}{2677402485911} a^{16} - \frac{3339284003187}{13387012429555} a^{15} + \frac{1170255526547}{2677402485911} a^{14} - \frac{6669905464812}{13387012429555} a^{13} + \frac{6663867702186}{13387012429555} a^{12} + \frac{3666619169923}{13387012429555} a^{11} - \frac{2379384253328}{13387012429555} a^{10} - \frac{4240524289601}{13387012429555} a^{9} - \frac{1682088816724}{13387012429555} a^{8} + \frac{293229730896}{13387012429555} a^{7} + \frac{451143399178}{2677402485911} a^{6} + \frac{2876129479224}{13387012429555} a^{5} + \frac{1849453151018}{13387012429555} a^{4} + \frac{604978445978}{13387012429555} a^{3} - \frac{2196819749374}{13387012429555} a^{2} + \frac{883452233921}{2677402485911} a - \frac{2116054177081}{13387012429555}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $14$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( \frac{12653957152607}{2677402485911} a^{29} - \frac{6159480532392}{2677402485911} a^{28} + \frac{78477429740129}{2677402485911} a^{27} - \frac{50349640529454}{2677402485911} a^{26} + \frac{198772937530862}{2677402485911} a^{25} - \frac{105849092098559}{2677402485911} a^{24} + \frac{144663718380552}{2677402485911} a^{23} + \frac{102353127789123}{2677402485911} a^{22} - \frac{550735971791860}{2677402485911} a^{21} + \frac{736058773339872}{2677402485911} a^{20} - \frac{1513402505071755}{2677402485911} a^{19} + \frac{1078104915700476}{2677402485911} a^{18} - \frac{328577462792968}{2677402485911} a^{17} - \frac{76704618826301}{2677402485911} a^{16} + \frac{4489202749714251}{2677402485911} a^{15} - \frac{1215995815292423}{2677402485911} a^{14} + \frac{9556496914311311}{2677402485911} a^{13} + \frac{2768316816085662}{2677402485911} a^{12} + \frac{11274958798156982}{2677402485911} a^{11} + \frac{10235722776091104}{2677402485911} a^{10} + \frac{9077290907100770}{2677402485911} a^{9} + \frac{8052604766471538}{2677402485911} a^{8} + \frac{2342098007255521}{2677402485911} a^{7} - \frac{1717269073290881}{2677402485911} a^{6} - \frac{2251867087989700}{2677402485911} a^{5} - \frac{1126642969502881}{2677402485911} a^{4} - \frac{133995717584920}{2677402485911} a^{3} + \frac{136551788434983}{2677402485911} a^{2} + \frac{93114123118404}{2677402485911} a + \frac{22939094334598}{2677402485911} \) (order $22$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 27376181.549941503 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
$C_{15}\times S_3$ (as 30T15):
A solvable group of order 90 |
The 45 conjugacy class representatives for $C_{15}\times S_3$ |
Character table for $C_{15}\times S_3$ is not computed |
Intermediate fields
\(\Q(\sqrt{-11}) \), \(\Q(\zeta_{11})^+\), 6.0.107811.1, \(\Q(\zeta_{11})\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 45 sibling: | data not computed |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | $30$ | R | $15{,}\,{\href{/LocalNumberField/5.5.0.1}{5} }^{3}$ | $30$ | R | $30$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{3}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{3}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{10}$ | $30$ | $15{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }^{3}$ | $15^{2}$ | $30$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{5}$ | $15{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }^{3}$ | $15^{2}$ | $15{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
$3$ | 3.15.20.99 | $x^{15} + 42 x^{14} + 27 x^{13} + 31 x^{12} + 45 x^{11} + 45 x^{10} + 41 x^{9} + 30 x^{8} + 42 x^{7} + 8 x^{6} + 75 x^{5} + 18 x^{4} + 42 x^{3} + 24 x^{2} + 51 x + 19$ | $3$ | $5$ | $20$ | $C_{15}$ | $[2]^{5}$ |
3.15.0.1 | $x^{15} + x^{2} - x + 1$ | $1$ | $15$ | $0$ | $C_{15}$ | $[\ ]^{15}$ | |
11 | Data not computed |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
* | 1.11.2t1.a.a | $1$ | $ 11 $ | \(\Q(\sqrt{-11}) \) | $C_2$ (as 2T1) | $1$ | $-1$ |
1.99.6t1.a.a | $1$ | $ 3^{2} \cdot 11 $ | 6.0.8732691.1 | $C_6$ (as 6T1) | $0$ | $-1$ | |
1.99.6t1.a.b | $1$ | $ 3^{2} \cdot 11 $ | 6.0.8732691.1 | $C_6$ (as 6T1) | $0$ | $-1$ | |
1.9.3t1.a.a | $1$ | $ 3^{2}$ | \(\Q(\zeta_{9})^+\) | $C_3$ (as 3T1) | $0$ | $1$ | |
1.9.3t1.a.b | $1$ | $ 3^{2}$ | \(\Q(\zeta_{9})^+\) | $C_3$ (as 3T1) | $0$ | $1$ | |
* | 1.11.10t1.a.a | $1$ | $ 11 $ | \(\Q(\zeta_{11})\) | $C_{10}$ (as 10T1) | $0$ | $-1$ |
* | 1.11.5t1.a.a | $1$ | $ 11 $ | \(\Q(\zeta_{11})^+\) | $C_5$ (as 5T1) | $0$ | $1$ |
* | 1.11.10t1.a.b | $1$ | $ 11 $ | \(\Q(\zeta_{11})\) | $C_{10}$ (as 10T1) | $0$ | $-1$ |
* | 1.11.10t1.a.c | $1$ | $ 11 $ | \(\Q(\zeta_{11})\) | $C_{10}$ (as 10T1) | $0$ | $-1$ |
* | 1.11.5t1.a.b | $1$ | $ 11 $ | \(\Q(\zeta_{11})^+\) | $C_5$ (as 5T1) | $0$ | $1$ |
* | 1.11.5t1.a.c | $1$ | $ 11 $ | \(\Q(\zeta_{11})^+\) | $C_5$ (as 5T1) | $0$ | $1$ |
* | 1.11.5t1.a.d | $1$ | $ 11 $ | \(\Q(\zeta_{11})^+\) | $C_5$ (as 5T1) | $0$ | $1$ |
* | 1.11.10t1.a.d | $1$ | $ 11 $ | \(\Q(\zeta_{11})\) | $C_{10}$ (as 10T1) | $0$ | $-1$ |
1.99.30t1.a.a | $1$ | $ 3^{2} \cdot 11 $ | 30.0.159386923550435671074967363509984324121230045171.1 | $C_{30}$ (as 30T1) | $0$ | $-1$ | |
1.99.30t1.a.b | $1$ | $ 3^{2} \cdot 11 $ | 30.0.159386923550435671074967363509984324121230045171.1 | $C_{30}$ (as 30T1) | $0$ | $-1$ | |
1.99.15t1.a.a | $1$ | $ 3^{2} \cdot 11 $ | 15.15.10943023107606534329121.1 | $C_{15}$ (as 15T1) | $0$ | $1$ | |
1.99.30t1.a.c | $1$ | $ 3^{2} \cdot 11 $ | 30.0.159386923550435671074967363509984324121230045171.1 | $C_{30}$ (as 30T1) | $0$ | $-1$ | |
1.99.30t1.a.d | $1$ | $ 3^{2} \cdot 11 $ | 30.0.159386923550435671074967363509984324121230045171.1 | $C_{30}$ (as 30T1) | $0$ | $-1$ | |
1.99.15t1.a.b | $1$ | $ 3^{2} \cdot 11 $ | 15.15.10943023107606534329121.1 | $C_{15}$ (as 15T1) | $0$ | $1$ | |
1.99.30t1.a.e | $1$ | $ 3^{2} \cdot 11 $ | 30.0.159386923550435671074967363509984324121230045171.1 | $C_{30}$ (as 30T1) | $0$ | $-1$ | |
1.99.15t1.a.c | $1$ | $ 3^{2} \cdot 11 $ | 15.15.10943023107606534329121.1 | $C_{15}$ (as 15T1) | $0$ | $1$ | |
1.99.30t1.a.f | $1$ | $ 3^{2} \cdot 11 $ | 30.0.159386923550435671074967363509984324121230045171.1 | $C_{30}$ (as 30T1) | $0$ | $-1$ | |
1.99.15t1.a.d | $1$ | $ 3^{2} \cdot 11 $ | 15.15.10943023107606534329121.1 | $C_{15}$ (as 15T1) | $0$ | $1$ | |
1.99.30t1.a.g | $1$ | $ 3^{2} \cdot 11 $ | 30.0.159386923550435671074967363509984324121230045171.1 | $C_{30}$ (as 30T1) | $0$ | $-1$ | |
1.99.15t1.a.e | $1$ | $ 3^{2} \cdot 11 $ | 15.15.10943023107606534329121.1 | $C_{15}$ (as 15T1) | $0$ | $1$ | |
1.99.30t1.a.h | $1$ | $ 3^{2} \cdot 11 $ | 30.0.159386923550435671074967363509984324121230045171.1 | $C_{30}$ (as 30T1) | $0$ | $-1$ | |
1.99.15t1.a.f | $1$ | $ 3^{2} \cdot 11 $ | 15.15.10943023107606534329121.1 | $C_{15}$ (as 15T1) | $0$ | $1$ | |
1.99.15t1.a.g | $1$ | $ 3^{2} \cdot 11 $ | 15.15.10943023107606534329121.1 | $C_{15}$ (as 15T1) | $0$ | $1$ | |
1.99.15t1.a.h | $1$ | $ 3^{2} \cdot 11 $ | 15.15.10943023107606534329121.1 | $C_{15}$ (as 15T1) | $0$ | $1$ | |
2.891.3t2.b.a | $2$ | $ 3^{4} \cdot 11 $ | 3.1.891.1 | $S_3$ (as 3T2) | $1$ | $0$ | |
* | 2.99.6t5.a.a | $2$ | $ 3^{2} \cdot 11 $ | 6.0.107811.1 | $S_3\times C_3$ (as 6T5) | $0$ | $0$ |
* | 2.99.6t5.a.b | $2$ | $ 3^{2} \cdot 11 $ | 6.0.107811.1 | $S_3\times C_3$ (as 6T5) | $0$ | $0$ |
2.9801.15t4.a.a | $2$ | $ 3^{4} \cdot 11^{2}$ | 15.5.120373254183671877620331.1 | $S_3 \times C_5$ (as 15T4) | $0$ | $0$ | |
2.9801.15t4.a.b | $2$ | $ 3^{4} \cdot 11^{2}$ | 15.5.120373254183671877620331.1 | $S_3 \times C_5$ (as 15T4) | $0$ | $0$ | |
2.9801.15t4.a.c | $2$ | $ 3^{4} \cdot 11^{2}$ | 15.5.120373254183671877620331.1 | $S_3 \times C_5$ (as 15T4) | $0$ | $0$ | |
2.9801.15t4.a.d | $2$ | $ 3^{4} \cdot 11^{2}$ | 15.5.120373254183671877620331.1 | $S_3 \times C_5$ (as 15T4) | $0$ | $0$ | |
* | 2.1089.30t15.a.a | $2$ | $ 3^{2} \cdot 11^{2}$ | 30.0.45711723244122563996456104229882472771.1 | $C_{15}\times S_3$ (as 30T15) | $0$ | $0$ |
* | 2.1089.30t15.a.b | $2$ | $ 3^{2} \cdot 11^{2}$ | 30.0.45711723244122563996456104229882472771.1 | $C_{15}\times S_3$ (as 30T15) | $0$ | $0$ |
* | 2.1089.30t15.a.c | $2$ | $ 3^{2} \cdot 11^{2}$ | 30.0.45711723244122563996456104229882472771.1 | $C_{15}\times S_3$ (as 30T15) | $0$ | $0$ |
* | 2.1089.30t15.a.d | $2$ | $ 3^{2} \cdot 11^{2}$ | 30.0.45711723244122563996456104229882472771.1 | $C_{15}\times S_3$ (as 30T15) | $0$ | $0$ |
* | 2.1089.30t15.a.e | $2$ | $ 3^{2} \cdot 11^{2}$ | 30.0.45711723244122563996456104229882472771.1 | $C_{15}\times S_3$ (as 30T15) | $0$ | $0$ |
* | 2.1089.30t15.a.f | $2$ | $ 3^{2} \cdot 11^{2}$ | 30.0.45711723244122563996456104229882472771.1 | $C_{15}\times S_3$ (as 30T15) | $0$ | $0$ |
* | 2.1089.30t15.a.g | $2$ | $ 3^{2} \cdot 11^{2}$ | 30.0.45711723244122563996456104229882472771.1 | $C_{15}\times S_3$ (as 30T15) | $0$ | $0$ |
* | 2.1089.30t15.a.h | $2$ | $ 3^{2} \cdot 11^{2}$ | 30.0.45711723244122563996456104229882472771.1 | $C_{15}\times S_3$ (as 30T15) | $0$ | $0$ |