Basic invariants
Dimension: | $1$ |
Group: | $C_{10}$ |
Conductor: | \(11\) |
Artin field: | Galois closure of \(\Q(\zeta_{11})\) |
Galois orbit size: | $4$ |
Smallest permutation container: | $C_{10}$ |
Parity: | odd |
Dirichlet character: | \(\chi_{11}(6,\cdot)\) |
Projective image: | $C_1$ |
Projective field: | Galois closure of \(\Q\) |
Defining polynomial
$f(x)$ | $=$ |
\( x^{10} - x^{9} + x^{8} - x^{7} + x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1 \)
|
The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$:
\( x^{5} + 7x + 28 \)
Roots:
$r_{ 1 }$ | $=$ |
\( 6 a^{3} + 30 a^{2} + 27 a + 2 + \left(22 a^{4} + 28 a^{3} + 12 a^{2} + 18 a + 7\right)\cdot 31 + \left(6 a^{4} + 2 a^{3} + 2 a^{2} + 18 a + 6\right)\cdot 31^{2} + \left(25 a^{4} + 7 a^{3} + 9 a^{2} + 14 a + 17\right)\cdot 31^{3} + \left(23 a^{4} + 7 a^{3} + a^{2} + 29 a + 29\right)\cdot 31^{4} +O(31^{5})\)
|
$r_{ 2 }$ | $=$ |
\( 8 a^{4} + 5 a^{3} + 27 a^{2} + 24 a + 12 + \left(16 a^{4} + 24 a^{3} + 8 a^{2} + 6 a + 27\right)\cdot 31 + \left(4 a^{4} + 28 a^{3} + 22 a^{2} + a\right)\cdot 31^{2} + \left(12 a^{4} + a^{3} + 20 a^{2} + 7 a + 6\right)\cdot 31^{3} + \left(20 a^{4} + 22 a^{3} + 2 a^{2} + 24 a + 7\right)\cdot 31^{4} +O(31^{5})\)
|
$r_{ 3 }$ | $=$ |
\( 9 a^{4} + 26 a^{3} + 26 a^{2} + 29 a + 30 + \left(23 a^{4} + 7 a^{3} + 11 a^{2} + 21 a + 10\right)\cdot 31 + \left(a^{4} + 26 a^{3} + 14 a^{2} + 19 a + 16\right)\cdot 31^{2} + \left(27 a^{4} + 4 a^{3} + 18 a^{2} + 6 a + 27\right)\cdot 31^{3} + \left(4 a^{4} + 28 a^{3} + 17 a^{2} + 29 a\right)\cdot 31^{4} +O(31^{5})\)
|
$r_{ 4 }$ | $=$ |
\( 11 a^{4} + 7 a^{3} + 25 a^{2} + 28 a + 14 + \left(12 a^{4} + 13 a^{3} + 6 a^{2} + 30 a + 27\right)\cdot 31 + \left(27 a^{4} + 6 a^{3} + 27 a^{2} + 15 a + 22\right)\cdot 31^{2} + \left(24 a^{4} + 22 a^{3} + 27 a^{2} + 3 a + 27\right)\cdot 31^{3} + \left(27 a^{4} + 25 a^{2} + 4 a + 20\right)\cdot 31^{4} +O(31^{5})\)
|
$r_{ 5 }$ | $=$ |
\( 11 a^{4} + 14 a^{3} + 2 a^{2} + 3 a + 4 + \left(12 a^{4} + 10 a^{3} + 13 a^{2} + 9 a + 24\right)\cdot 31 + \left(21 a^{4} + 6 a^{3} + 15 a^{2} + 16 a + 14\right)\cdot 31^{2} + \left(19 a^{4} + 4 a^{3} + 20 a^{2} + 22 a + 23\right)\cdot 31^{3} + \left(25 a^{4} + 7 a^{3} + 3 a^{2} + 11 a + 11\right)\cdot 31^{4} +O(31^{5})\)
|
$r_{ 6 }$ | $=$ |
\( 13 a^{4} + 27 a^{3} + 18 a^{2} + 10 a + 19 + \left(4 a^{4} + 27 a^{3} + 4 a^{2} + 19 a + 1\right)\cdot 31 + \left(7 a^{4} + 16 a^{3} + 13 a^{2} + 22 a + 21\right)\cdot 31^{2} + \left(20 a^{4} + 15 a^{3} + 30 a^{2} + 24 a + 1\right)\cdot 31^{3} + \left(19 a^{4} + 24 a^{3} + 22 a^{2} + 24 a\right)\cdot 31^{4} +O(31^{5})\)
|
$r_{ 7 }$ | $=$ |
\( 16 a^{4} + 30 a^{3} + 23 a^{2} + 10 a + 1 + \left(28 a^{4} + 25 a^{3} + 9 a^{2} + 28 a + 3\right)\cdot 31 + \left(12 a^{4} + 30 a^{3} + 28 a^{2} + a + 23\right)\cdot 31^{2} + \left(5 a^{4} + 2 a^{3} + 12 a^{2} + 24 a + 11\right)\cdot 31^{3} + \left(25 a^{4} + 11 a^{3} + 15 a^{2} + 18 a + 15\right)\cdot 31^{4} +O(31^{5})\)
|
$r_{ 8 }$ | $=$ |
\( 18 a^{4} + 18 a^{3} + 15 a^{2} + 27 a + 6 + \left(12 a^{4} + 24 a^{3} + 18 a^{2} + 26 a + 19\right)\cdot 31 + \left(21 a^{4} + 12 a^{2} + 22 a + 8\right)\cdot 31^{2} + \left(28 a^{4} + 17 a^{3} + 20 a^{2} + a + 24\right)\cdot 31^{3} + \left(16 a^{4} + 24 a^{3} + 22 a^{2} + 9 a + 18\right)\cdot 31^{4} +O(31^{5})\)
|
$r_{ 9 }$ | $=$ |
\( 18 a^{4} + 27 a^{3} + 2 a^{2} + 11 a + 16 + \left(9 a^{4} + a^{3} + 27 a^{2} + 3 a + 30\right)\cdot 31 + \left(20 a^{4} + 6 a^{3} + 25 a^{2} + 19 a + 7\right)\cdot 31^{2} + \left(9 a^{4} + 23 a^{3} + 21 a^{2} + 11 a + 29\right)\cdot 31^{3} + \left(22 a^{4} + 14 a^{3} + 20 a^{2} + 15 a + 14\right)\cdot 31^{4} +O(31^{5})\)
|
$r_{ 10 }$ | $=$ |
\( 20 a^{4} + 26 a^{3} + 18 a^{2} + 17 a + 21 + \left(13 a^{4} + 21 a^{3} + 10 a^{2} + 20 a + 3\right)\cdot 31 + \left(29 a^{3} + 24 a^{2} + 16 a + 2\right)\cdot 31^{2} + \left(13 a^{4} + 24 a^{3} + 3 a^{2} + 7 a + 17\right)\cdot 31^{3} + \left(30 a^{4} + 14 a^{3} + 22 a^{2} + 19 a + 4\right)\cdot 31^{4} +O(31^{5})\)
|
Generators of the action on the roots $r_1, \ldots, r_{ 10 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 10 }$ | Character value | Complex conjugation |
$1$ | $1$ | $()$ | $1$ | |
$1$ | $2$ | $(1,3)(2,9)(4,5)(6,7)(8,10)$ | $-1$ | ✓ |
$1$ | $5$ | $(1,9,10,4,6)(2,8,5,7,3)$ | $\zeta_{5}^{3}$ | |
$1$ | $5$ | $(1,10,6,9,4)(2,5,3,8,7)$ | $\zeta_{5}$ | |
$1$ | $5$ | $(1,4,9,6,10)(2,7,8,3,5)$ | $-\zeta_{5}^{3} - \zeta_{5}^{2} - \zeta_{5} - 1$ | |
$1$ | $5$ | $(1,6,4,10,9)(2,3,7,5,8)$ | $\zeta_{5}^{2}$ | |
$1$ | $10$ | $(1,2,10,5,6,3,9,8,4,7)$ | $-\zeta_{5}^{3}$ | |
$1$ | $10$ | $(1,5,9,7,10,3,4,2,6,8)$ | $\zeta_{5}^{3} + \zeta_{5}^{2} + \zeta_{5} + 1$ | |
$1$ | $10$ | $(1,8,6,2,4,3,10,7,9,5)$ | $-\zeta_{5}$ | |
$1$ | $10$ | $(1,7,4,8,9,3,6,5,10,2)$ | $-\zeta_{5}^{2}$ |