Basic invariants
Dimension: | $2$ |
Group: | $S_3\times C_3$ |
Conductor: | \(99\)\(\medspace = 3^{2} \cdot 11 \) |
Artin stem field: | Galois closure of 6.0.107811.1 |
Galois orbit size: | $2$ |
Smallest permutation container: | $S_3\times C_3$ |
Parity: | odd |
Determinant: | 1.99.6t1.a.b |
Projective image: | $S_3$ |
Projective stem field: | Galois closure of 3.1.891.1 |
Defining polynomial
$f(x)$ | $=$ |
\( x^{6} - x^{4} - 2x^{3} + 3x^{2} + x + 1 \)
|
The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$:
\( x^{2} + 16x + 3 \)
Roots:
$r_{ 1 }$ | $=$ |
\( 11 a + 1 + \left(a + 2\right)\cdot 17 + \left(15 a + 1\right)\cdot 17^{2} + 15 a\cdot 17^{3} + \left(5 a + 5\right)\cdot 17^{4} +O(17^{5})\)
$r_{ 2 }$ |
$=$ |
\( 6 a + 12 + \left(15 a + 9\right)\cdot 17 + \left(a + 14\right)\cdot 17^{2} + a\cdot 17^{3} + \left(11 a + 12\right)\cdot 17^{4} +O(17^{5})\)
| $r_{ 3 }$ |
$=$ |
\( 14 a + 6 + \left(13 a + 1\right)\cdot 17 + \left(2 a + 15\right)\cdot 17^{2} + 14\cdot 17^{3} + 14\cdot 17^{4} +O(17^{5})\)
| $r_{ 4 }$ |
$=$ |
\( 3 a + 13 + \left(12 a + 13\right)\cdot 17 + \left(4 a + 11\right)\cdot 17^{2} + \left(a + 4\right)\cdot 17^{3} + \left(11 a + 14\right)\cdot 17^{4} +O(17^{5})\)
| $r_{ 5 }$ |
$=$ |
\( 3 a + 3 + \left(3 a + 1\right)\cdot 17 + \left(14 a + 4\right)\cdot 17^{2} + \left(16 a + 12\right)\cdot 17^{3} + \left(16 a + 14\right)\cdot 17^{4} +O(17^{5})\)
| $r_{ 6 }$ |
$=$ |
\( 14 a + 16 + \left(4 a + 5\right)\cdot 17 + \left(12 a + 4\right)\cdot 17^{2} + \left(15 a + 1\right)\cdot 17^{3} + \left(5 a + 7\right)\cdot 17^{4} +O(17^{5})\)
| |
Generators of the action on the roots $r_1, \ldots, r_{ 6 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 6 }$ | Character value |
$1$ | $1$ | $()$ | $2$ |
$3$ | $2$ | $(1,3)(2,4)(5,6)$ | $0$ |
$1$ | $3$ | $(1,4,5)(2,6,3)$ | $-2 \zeta_{3} - 2$ |
$1$ | $3$ | $(1,5,4)(2,3,6)$ | $2 \zeta_{3}$ |
$2$ | $3$ | $(1,4,5)$ | $-\zeta_{3}$ |
$2$ | $3$ | $(1,5,4)$ | $\zeta_{3} + 1$ |
$2$ | $3$ | $(1,4,5)(2,3,6)$ | $-1$ |
$3$ | $6$ | $(1,6,4,3,5,2)$ | $0$ |
$3$ | $6$ | $(1,2,5,3,4,6)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.