Properties

Label 1.11.5t1.a.d
Dimension $1$
Group $C_5$
Conductor $11$
Root number not computed
Indicator $0$

Related objects

Learn more about

Basic invariants

Dimension: $1$
Group: $C_5$
Conductor: \(11\)
Artin field: \(\Q(\zeta_{11})^+\)
Galois orbit size: $4$
Smallest permutation container: $C_5$
Parity: even
Dirichlet character: \(\chi_{11}(4,\cdot)\)
Projective image: $C_1$
Projective field: \(\Q\)

Defining polynomial

$f(x)$$=$\(x^{5} - x^{4} - 4 x^{3} + 3 x^{2} + 3 x - 1\)  Toggle raw display.

The roots of $f$ are computed in $\Q_{ 23 }$ to precision 5.

Roots:
$r_{ 1 }$ $=$ \( 9 + 20\cdot 23 + 11\cdot 23^{2} + 6\cdot 23^{3} + 11\cdot 23^{4} +O(23^{5})\)  Toggle raw display
$r_{ 2 }$ $=$ \( 12 + 11\cdot 23^{2} + 17\cdot 23^{3} + 20\cdot 23^{4} +O(23^{5})\)  Toggle raw display
$r_{ 3 }$ $=$ \( 13 + 4\cdot 23 + 7\cdot 23^{2} + 14\cdot 23^{4} +O(23^{5})\)  Toggle raw display
$r_{ 4 }$ $=$ \( 17 + 3\cdot 23 + 4\cdot 23^{2} + 4\cdot 23^{3} + 21\cdot 23^{4} +O(23^{5})\)  Toggle raw display
$r_{ 5 }$ $=$ \( 19 + 16\cdot 23 + 11\cdot 23^{2} + 17\cdot 23^{3} + 23^{4} +O(23^{5})\)  Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,5,2,4,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$1$
$1$$5$$(1,5,2,4,3)$$-\zeta_{5}^{3} - \zeta_{5}^{2} - \zeta_{5} - 1$
$1$$5$$(1,2,3,5,4)$$\zeta_{5}^{3}$
$1$$5$$(1,4,5,3,2)$$\zeta_{5}^{2}$
$1$$5$$(1,3,4,2,5)$$\zeta_{5}$

The blue line marks the conjugacy class containing complex conjugation.