Normalized defining polynomial
\(x^{24} - 10 x^{23} + 48 x^{22} - 158 x^{21} + 381 x^{20} - 714 x^{19} + 1213 x^{18} - 1907 x^{17} + 2614 x^{16} - 3516 x^{15} + 4694 x^{14} - 5466 x^{13} + 6009 x^{12} - 6785 x^{11} + 7506 x^{10} - 8491 x^{9} + 9365 x^{8} - 8498 x^{7} + 5899 x^{6} - 3118 x^{5} + 1203 x^{4} - 296 x^{3} + 36 x^{2} - 7 x + 1\)
Invariants
Degree: | $24$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[4, 10]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(940350029043078386535797119140625\)\(\medspace = 5^{16}\cdot 151^{10}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $23.65$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $5, 151$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $4$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $\frac{1}{875125528187897786812793362957451372} a^{23} + \frac{297910072207355670197174735889822049}{875125528187897786812793362957451372} a^{22} + \frac{148950382269433624985505638798611159}{875125528187897786812793362957451372} a^{21} - \frac{7882921600039810103706538010118705}{875125528187897786812793362957451372} a^{20} + \frac{218024731943997684834650575595184783}{437562764093948893406396681478725686} a^{19} + \frac{23167770797040626358634591102764461}{218781382046974446703198340739362843} a^{18} + \frac{28070856480447493611161740005146177}{875125528187897786812793362957451372} a^{17} + \frac{9923486054539175961157635486784438}{218781382046974446703198340739362843} a^{16} - \frac{208245976926690287853629926757934385}{437562764093948893406396681478725686} a^{15} - \frac{116653483207228527812261328145429615}{437562764093948893406396681478725686} a^{14} + \frac{66033036153168352389090994015335289}{218781382046974446703198340739362843} a^{13} + \frac{121383692978433991653456962546743617}{437562764093948893406396681478725686} a^{12} - \frac{391181227056777335934856971000790033}{875125528187897786812793362957451372} a^{11} + \frac{72632260741017513731530661855819739}{218781382046974446703198340739362843} a^{10} - \frac{43129641678651491115513993228108915}{437562764093948893406396681478725686} a^{9} - \frac{297969163008158790181692585847983657}{875125528187897786812793362957451372} a^{8} + \frac{54321822701238036573178679071410253}{437562764093948893406396681478725686} a^{7} - \frac{44163883788644414331338698569065754}{218781382046974446703198340739362843} a^{6} + \frac{197678238846539460674978159237830267}{875125528187897786812793362957451372} a^{5} - \frac{73613892314370036057193815451950893}{875125528187897786812793362957451372} a^{4} + \frac{94091296039126895924835987494231607}{218781382046974446703198340739362843} a^{3} - \frac{92462216976377579456038917821066977}{218781382046974446703198340739362843} a^{2} - \frac{106513713495078713465352275663587523}{218781382046974446703198340739362843} a - \frac{289574885819262321608123177625323211}{875125528187897786812793362957451372}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $13$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) ![]() | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 8548806.54922059 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
A non-solvable group of order 240 |
The 18 conjugacy class representatives for $C_4.A_5$ |
Character table for $C_4.A_5$ |
Intermediate fields
6.2.14250625.2, Deg 12 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 40 siblings: | data not computed |
Arithmetically equvalently sibling: | 24.4.940350029043078386535797119140625.2 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/3.12.0.1}{12} }^{2}$ | R | $20{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{6}$ | $20{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{8}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{6}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | $20{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{8}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | $20{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
$5$ | 5.12.8.1 | $x^{12} - 30 x^{9} + 175 x^{6} + 500 x^{3} + 5000$ | $3$ | $4$ | $8$ | $C_3 : C_4$ | $[\ ]_{3}^{4}$ |
5.12.8.1 | $x^{12} - 30 x^{9} + 175 x^{6} + 500 x^{3} + 5000$ | $3$ | $4$ | $8$ | $C_3 : C_4$ | $[\ ]_{3}^{4}$ | |
$151$ | 151.4.2.2 | $x^{4} - 151 x^{2} + 273612$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
151.4.0.1 | $x^{4} - x + 6$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
151.8.4.1 | $x^{8} + 273612 x^{4} - 3442951 x^{2} + 18715881636$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
151.8.4.1 | $x^{8} + 273612 x^{4} - 3442951 x^{2} + 18715881636$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
1.151.2t1.a.a | $1$ | $ 151 $ | \(\Q(\sqrt{-151}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
2.3775.120.a.a | $2$ | $ 5^{2} \cdot 151 $ | 24.4.940350029043078386535797119140625.1 | $C_4.A_5$ (as 24T576) | $0$ | $0$ | |
2.3775.120.a.b | $2$ | $ 5^{2} \cdot 151 $ | 24.4.940350029043078386535797119140625.1 | $C_4.A_5$ (as 24T576) | $0$ | $0$ | |
2.3775.120.a.c | $2$ | $ 5^{2} \cdot 151 $ | 24.4.940350029043078386535797119140625.1 | $C_4.A_5$ (as 24T576) | $0$ | $0$ | |
2.3775.120.a.d | $2$ | $ 5^{2} \cdot 151 $ | 24.4.940350029043078386535797119140625.1 | $C_4.A_5$ (as 24T576) | $0$ | $0$ | |
* | 3.3775.12t76.a.a | $3$ | $ 5^{2} \cdot 151 $ | 10.0.49064203594375.1 | $A_5\times C_2$ (as 10T11) | $1$ | $1$ |
* | 3.3775.12t76.a.b | $3$ | $ 5^{2} \cdot 151 $ | 10.0.49064203594375.1 | $A_5\times C_2$ (as 10T11) | $1$ | $1$ |
3.570025.12t33.a.a | $3$ | $ 5^{2} \cdot 151^{2}$ | 5.1.570025.1 | $A_5$ (as 5T4) | $1$ | $-1$ | |
3.570025.12t33.a.b | $3$ | $ 5^{2} \cdot 151^{2}$ | 5.1.570025.1 | $A_5$ (as 5T4) | $1$ | $-1$ | |
4.570025.10t11.a.a | $4$ | $ 5^{2} \cdot 151^{2}$ | 10.0.49064203594375.1 | $A_5\times C_2$ (as 10T11) | $1$ | $0$ | |
4.570025.5t4.a.a | $4$ | $ 5^{2} \cdot 151^{2}$ | 5.1.570025.1 | $A_5$ (as 5T4) | $1$ | $0$ | |
4.570025.40t188.a.a | $4$ | $ 5^{2} \cdot 151^{2}$ | 24.4.940350029043078386535797119140625.1 | $C_4.A_5$ (as 24T576) | $0$ | $0$ | |
4.570025.40t188.a.b | $4$ | $ 5^{2} \cdot 151^{2}$ | 24.4.940350029043078386535797119140625.1 | $C_4.A_5$ (as 24T576) | $0$ | $0$ | |
5.2151844375.12t75.a.a | $5$ | $ 5^{4} \cdot 151^{3}$ | 10.0.49064203594375.1 | $A_5\times C_2$ (as 10T11) | $1$ | $-1$ | |
* | 5.14250625.6t12.a.a | $5$ | $ 5^{4} \cdot 151^{2}$ | 5.1.570025.1 | $A_5$ (as 5T4) | $1$ | $1$ |
* | 6.2151844375.24t576.a.a | $6$ | $ 5^{4} \cdot 151^{3}$ | 24.4.940350029043078386535797119140625.1 | $C_4.A_5$ (as 24T576) | $0$ | $0$ |
* | 6.2151844375.24t576.a.b | $6$ | $ 5^{4} \cdot 151^{3}$ | 24.4.940350029043078386535797119140625.1 | $C_4.A_5$ (as 24T576) | $0$ | $0$ |