Properties

Label 3.3775.12t76.a.b
Dimension $3$
Group $A_5\times C_2$
Conductor $3775$
Root number $1$
Indicator $1$

Related objects

Learn more about

Basic invariants

Dimension: $3$
Group: $A_5\times C_2$
Conductor: \(3775\)\(\medspace = 5^{2} \cdot 151 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: 10.0.49064203594375.1
Galois orbit size: $2$
Smallest permutation container: 12T76
Parity: odd
Determinant: 1.151.2t1.a.a
Projective image: $A_5$
Projective stem field: 5.1.570025.1

Defining polynomial

$f(x)$$=$\(x^{10} - 4 x^{9} + 7 x^{8} - 18 x^{7} + 79 x^{6} - 205 x^{5} + 297 x^{4} - 250 x^{3} + 130 x^{2} - 45 x + 9\)  Toggle raw display.

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 10.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: \(x^{5} + 7 x + 28\)  Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 2 a^{4} + 29 a^{3} + 8 a^{2} + 16 a + 24 + \left(29 a^{4} + 29 a^{3} + 25 a + 7\right)\cdot 31 + \left(21 a^{4} + 11 a^{3} + 10 a^{2} + 3 a + 11\right)\cdot 31^{2} + \left(21 a^{4} + 8 a^{3} + 16 a^{2} + 27 a + 22\right)\cdot 31^{3} + \left(18 a^{4} + 10 a^{3} + 12 a^{2} + 28 a + 11\right)\cdot 31^{4} + \left(19 a^{4} + 25 a^{3} + 28 a^{2} + 11 a + 4\right)\cdot 31^{5} + \left(4 a^{4} + 29 a^{3} + 5 a^{2} + 12 a + 1\right)\cdot 31^{6} + \left(7 a^{4} + 12 a^{3} + 13 a^{2} + 23 a + 9\right)\cdot 31^{7} + \left(4 a^{4} + 20 a^{3} + 9 a^{2} + 18 a + 11\right)\cdot 31^{8} + \left(6 a^{4} + 16 a^{3} + 28 a^{2} + 29 a + 3\right)\cdot 31^{9} +O(31^{10})\)  Toggle raw display
$r_{ 2 }$ $=$ \( 3 a^{4} + 21 a^{3} + 30 a^{2} + 19 a + 11 + \left(5 a^{4} + 25 a^{3} + 27 a^{2} + 29 a + 22\right)\cdot 31 + \left(18 a^{4} + 19 a^{3} + 15 a^{2} + 6 a + 8\right)\cdot 31^{2} + \left(28 a^{4} + 24 a^{3} + 11 a^{2} + a + 11\right)\cdot 31^{3} + \left(22 a^{4} + 19 a^{3} + 24 a^{2} + a + 4\right)\cdot 31^{4} + \left(18 a^{4} + 10 a^{3} + 15 a^{2} + a + 18\right)\cdot 31^{5} + \left(23 a^{4} + 19 a^{3} + 22 a^{2} + 7 a + 20\right)\cdot 31^{6} + \left(30 a^{4} + 26 a^{3} + 23 a^{2} + 17 a + 29\right)\cdot 31^{7} + \left(15 a^{4} + 22 a^{3} + 24 a^{2} + 20 a + 8\right)\cdot 31^{8} + \left(30 a^{4} + 29 a^{3} + 22 a^{2} + 28\right)\cdot 31^{9} +O(31^{10})\)  Toggle raw display
$r_{ 3 }$ $=$ \( 8 a^{4} + 30 a^{3} + 22 a^{2} + 22 a + 8 + \left(29 a^{4} + 5 a^{3} + 27 a^{2} + 10 a + 21\right)\cdot 31 + \left(4 a^{4} + 3 a^{3} + 8 a^{2} + 17 a + 27\right)\cdot 31^{2} + \left(18 a^{4} + 8 a^{3} + a^{2} + 4 a + 14\right)\cdot 31^{3} + \left(22 a^{4} + 11 a^{3} + 4 a^{2} + 21 a + 2\right)\cdot 31^{4} + \left(25 a^{4} + 19 a^{3} + 28 a^{2} + 4 a + 20\right)\cdot 31^{5} + \left(19 a^{4} + 11 a^{3} + 11 a^{2} + 28 a + 5\right)\cdot 31^{6} + \left(7 a^{4} + 17 a^{3} + 9 a^{2} + 3 a + 24\right)\cdot 31^{7} + \left(20 a^{4} + 8 a^{3} + 29 a^{2} + 3 a + 1\right)\cdot 31^{8} + \left(22 a^{4} + 8 a^{3} + 9 a^{2} + 13 a + 9\right)\cdot 31^{9} +O(31^{10})\)  Toggle raw display
$r_{ 4 }$ $=$ \( 17 a^{4} + 18 a^{3} + 22 a^{2} + 13 a + 15 + \left(6 a^{4} + 30 a^{3} + 10 a^{2} + 9 a + 30\right)\cdot 31 + \left(6 a^{4} + 8 a^{3} + 27 a^{2} + 7 a + 9\right)\cdot 31^{2} + \left(28 a^{4} + 5 a^{3} + 3 a^{2} + 3 a + 15\right)\cdot 31^{3} + \left(19 a^{4} + 18 a^{3} + 12 a^{2} + 24 a + 18\right)\cdot 31^{4} + \left(a^{4} + 29 a^{3} + 2 a^{2} + 2 a + 21\right)\cdot 31^{5} + \left(5 a^{4} + 13 a^{3} + 12 a^{2} + 20 a + 9\right)\cdot 31^{6} + \left(11 a^{4} + 29 a^{3} + 26 a^{2} + 28 a + 25\right)\cdot 31^{7} + \left(27 a^{4} + 6 a^{3} + 21 a^{2} + 4 a + 16\right)\cdot 31^{8} + \left(7 a^{4} + 20 a^{3} + 11 a^{2} + 12 a + 25\right)\cdot 31^{9} +O(31^{10})\)  Toggle raw display
$r_{ 5 }$ $=$ \( 22 a^{4} + a^{3} + 14 a^{2} + 23 a + 12 + \left(8 a^{4} + 12 a^{3} + 7 a^{2} + 24 a + 5\right)\cdot 31 + \left(2 a^{4} + 25 a^{3} + 18 a^{2} + 25\right)\cdot 31^{2} + \left(2 a^{4} + 11 a^{2} + 5 a + 17\right)\cdot 31^{3} + \left(24 a^{4} + 2 a^{3} + 23 a^{2} + a + 4\right)\cdot 31^{4} + \left(26 a^{4} + 10 a^{3} + 15 a^{2} + 16 a + 1\right)\cdot 31^{5} + \left(26 a^{4} + 28 a^{3} + 2 a^{2} + 11 a + 14\right)\cdot 31^{6} + \left(25 a^{4} + 4 a^{3} + 27 a^{2} + 13 a + 8\right)\cdot 31^{7} + \left(8 a^{4} + 22 a^{3} + 23 a^{2} + 24 a + 12\right)\cdot 31^{8} + \left(13 a^{4} + 25 a^{3} + 23 a^{2} + 28 a + 12\right)\cdot 31^{9} +O(31^{10})\)  Toggle raw display
$r_{ 6 }$ $=$ \( 23 a^{4} + 11 a^{3} + 19 a^{2} + 14 a + 30 + \left(29 a^{4} + 24 a^{3} + 5 a^{2} + 30 a + 23\right)\cdot 31 + \left(21 a^{4} + 29 a^{3} + 20 a^{2} + 5 a + 23\right)\cdot 31^{2} + \left(27 a^{4} + 29 a^{3} + 9 a^{2} + 10 a + 18\right)\cdot 31^{3} + \left(14 a^{4} + 11 a^{3} + 8 a^{2} + 28 a + 27\right)\cdot 31^{4} + \left(a^{4} + 7 a^{3} + 25 a^{2} + 16 a + 26\right)\cdot 31^{5} + \left(22 a^{4} + 12 a^{3} + 18 a^{2} + 14 a + 11\right)\cdot 31^{6} + \left(8 a^{4} + 28 a^{3} + 14 a^{2} + 13 a + 5\right)\cdot 31^{7} + \left(13 a^{4} + 19 a^{3} + 8 a^{2} + 26 a + 6\right)\cdot 31^{8} + \left(16 a^{4} + 12 a^{3} + 21 a^{2} + 24 a + 5\right)\cdot 31^{9} +O(31^{10})\)  Toggle raw display
$r_{ 7 }$ $=$ \( 25 a^{4} + 10 a^{3} + 25 a^{2} + a + 4 + \left(9 a^{4} + 17 a^{3} + 6 a^{2} + 4 a + 30\right)\cdot 31 + \left(3 a^{3} + 6 a^{2} + 28 a + 7\right)\cdot 31^{2} + \left(10 a^{4} + 9 a^{3} + 8 a^{2}\right)\cdot 31^{3} + \left(11 a^{4} + 30 a^{3} + 9 a^{2} + 10 a + 20\right)\cdot 31^{4} + \left(9 a^{4} + 19 a^{3} + 10 a^{2} + 30 a + 27\right)\cdot 31^{5} + \left(27 a^{4} + 2 a^{3} + 24 a^{2} + 13 a + 28\right)\cdot 31^{6} + \left(11 a^{4} + 24 a^{3} + 16\right)\cdot 31^{7} + \left(a^{4} + 16 a^{3} + 30 a^{2} + 12 a + 1\right)\cdot 31^{8} + \left(13 a^{4} + 16 a^{3} + 26 a^{2} + 25 a + 11\right)\cdot 31^{9} +O(31^{10})\)  Toggle raw display
$r_{ 8 }$ $=$ \( 26 a^{4} + 2 a^{3} + 14 a^{2} + 22 a + 22 + \left(30 a^{4} + 7 a^{3} + 27 a + 17\right)\cdot 31 + \left(25 a^{4} + 28 a^{3} + 7 a^{2} + 27 a + 21\right)\cdot 31^{2} + \left(27 a^{4} + 21 a^{3} + 23 a^{2} + 18 a + 25\right)\cdot 31^{3} + \left(13 a^{4} + 8 a^{3} + 12 a^{2} + 13 a + 15\right)\cdot 31^{4} + \left(27 a^{4} + 30 a^{3} + 26 a^{2} + 27 a + 23\right)\cdot 31^{5} + \left(22 a^{4} + 19 a^{3} + 2 a^{2} + 30 a + 22\right)\cdot 31^{6} + \left(7 a^{4} + 7 a^{3} + a^{2} + 3 a + 24\right)\cdot 31^{7} + \left(8 a^{4} + 21 a^{3} + 21 a^{2} + 24 a + 2\right)\cdot 31^{8} + \left(17 a^{4} + 25 a^{3} + 10 a^{2} + 24 a + 16\right)\cdot 31^{9} +O(31^{10})\)  Toggle raw display
$r_{ 9 }$ $=$ \( 30 a^{4} + 4 a^{3} + 22 a^{2} + a + 1 + \left(22 a^{4} + 8 a^{3} + 20 a^{2} + 2 a + 17\right)\cdot 31 + \left(26 a^{4} + 29 a^{3} + 6 a^{2} + 12 a + 19\right)\cdot 31^{2} + \left(24 a^{4} + 10 a^{3} + 25 a^{2} + 28 a + 27\right)\cdot 31^{3} + \left(22 a^{3} + 24 a^{2} + 29 a + 16\right)\cdot 31^{4} + \left(28 a^{4} + 10 a^{3} + 16 a^{2} + 13 a + 20\right)\cdot 31^{5} + \left(24 a^{4} + 12 a^{3} + 9 a^{2} + 6 a + 21\right)\cdot 31^{6} + \left(7 a^{4} + 22 a^{3} + 22 a^{2} + 22 a + 12\right)\cdot 31^{7} + \left(26 a^{4} + 21 a^{3} + 21 a^{2} + 21 a + 4\right)\cdot 31^{8} + \left(23 a^{4} + 24 a^{3} + 28 a^{2} + 6 a + 28\right)\cdot 31^{9} +O(31^{10})\)  Toggle raw display
$r_{ 10 }$ $=$ \( 30 a^{4} + 29 a^{3} + 10 a^{2} + 24 a + 1 + \left(13 a^{4} + 24 a^{3} + 16 a^{2} + 21 a + 10\right)\cdot 31 + \left(26 a^{4} + 25 a^{3} + 3 a^{2} + 13 a + 30\right)\cdot 31^{2} + \left(27 a^{4} + 4 a^{3} + 13 a^{2} + 24 a\right)\cdot 31^{3} + \left(5 a^{4} + 20 a^{3} + 23 a^{2} + 27 a + 2\right)\cdot 31^{4} + \left(27 a^{4} + 22 a^{3} + 16 a^{2} + 29 a + 22\right)\cdot 31^{5} + \left(8 a^{4} + 4 a^{3} + 13 a^{2} + 9 a + 18\right)\cdot 31^{6} + \left(5 a^{4} + 12 a^{3} + 16 a^{2} + 28 a + 29\right)\cdot 31^{7} + \left(29 a^{4} + 25 a^{3} + 26 a^{2} + 29 a + 26\right)\cdot 31^{8} + \left(3 a^{4} + 5 a^{3} + a^{2} + 19 a + 15\right)\cdot 31^{9} +O(31^{10})\)  Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 10 }$

Cycle notation
$(1,7)(2,5)(3,9)(4,8)(6,10)$
$(2,3,6)(5,9,10)$
$(1,4,6,7,8,10)(2,5)(3,9)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 10 }$ Character value
$1$$1$$()$$3$
$1$$2$$(1,7)(2,5)(3,9)(4,8)(6,10)$$-3$
$15$$2$$(1,4)(2,10)(3,9)(5,6)(7,8)$$1$
$15$$2$$(1,8)(2,6)(4,7)(5,10)$$-1$
$20$$3$$(1,6,8)(4,7,10)$$0$
$12$$5$$(1,3,8,2,6)(4,5,10,7,9)$$\zeta_{5}^{3} + \zeta_{5}^{2} + 1$
$12$$5$$(1,2,3,6,8)(4,7,5,9,10)$$-\zeta_{5}^{3} - \zeta_{5}^{2}$
$20$$6$$(1,4,6,7,8,10)(2,5)(3,9)$$0$
$12$$10$$(1,5,3,10,8,7,2,9,6,4)$$\zeta_{5}^{3} + \zeta_{5}^{2}$
$12$$10$$(1,10,2,4,3,7,6,5,8,9)$$-\zeta_{5}^{3} - \zeta_{5}^{2} - 1$

The blue line marks the conjugacy class containing complex conjugation.