Normalized defining polynomial
\( x^{24} - 2 x^{23} + 6 x^{22} - 5 x^{21} + 11 x^{20} - 17 x^{19} + 2 x^{18} - 34 x^{17} - 139 x^{16} - 108 x^{15} - 455 x^{14} - 497 x^{13} - 1230 x^{12} - 1691 x^{11} - 2719 x^{10} - 4214 x^{9} - 4936 x^{8} - 6130 x^{7} - 5653 x^{6} - 4317 x^{5} - 2323 x^{4} - 45 x^{3} - 323 x^{2} + 428 x + 173 \)
Invariants
Degree: | $24$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[4, 10]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(940350029043078386535797119140625\)\(\medspace = 5^{16}\cdot 151^{10}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $23.65$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $5, 151$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $4$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $\frac{1}{2} a^{22} - \frac{1}{2} a^{21} - \frac{1}{2} a^{18} - \frac{1}{2} a^{16} - \frac{1}{2} a^{15} - \frac{1}{2} a^{14} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{24498727281240124099191850974287478308578} a^{23} + \frac{3710546243226076921268272146468673232115}{24498727281240124099191850974287478308578} a^{22} + \frac{2162952239244527749060904971796472318542}{12249363640620062049595925487143739154289} a^{21} - \frac{4811109892166050828140277310153613736482}{12249363640620062049595925487143739154289} a^{20} - \frac{10765438924583734877531073850815090368363}{24498727281240124099191850974287478308578} a^{19} + \frac{3100580018102610156573838314651515062406}{12249363640620062049595925487143739154289} a^{18} - \frac{3343566034031005483447072348777349358105}{24498727281240124099191850974287478308578} a^{17} - \frac{8043399870115749266766434103093803967009}{24498727281240124099191850974287478308578} a^{16} - \frac{545734595493220870334534730799110855129}{24498727281240124099191850974287478308578} a^{15} - \frac{114955875602119953368765649520291582374}{12249363640620062049595925487143739154289} a^{14} - \frac{3966365215076830032697675217068564392620}{12249363640620062049595925487143739154289} a^{13} - \frac{9461552836209748896572059537978715047367}{24498727281240124099191850974287478308578} a^{12} - \frac{7866207705673987369742032820424940367879}{24498727281240124099191850974287478308578} a^{11} - \frac{2744275593818821877568097911070076973883}{24498727281240124099191850974287478308578} a^{10} - \frac{12047515744516666234192974341744274494129}{24498727281240124099191850974287478308578} a^{9} + \frac{2520541965945126198589918572883051746756}{12249363640620062049595925487143739154289} a^{8} + \frac{2079415946876799135598444416166717784647}{24498727281240124099191850974287478308578} a^{7} + \frac{344933479362339271858239468800174870643}{24498727281240124099191850974287478308578} a^{6} - \frac{7709844818670604822128212406971079337819}{24498727281240124099191850974287478308578} a^{5} - \frac{10809525086350149983066780640962498816827}{24498727281240124099191850974287478308578} a^{4} - \frac{6570155719911128348526113973607789609473}{24498727281240124099191850974287478308578} a^{3} - \frac{11227901057787607693251768658948612907973}{24498727281240124099191850974287478308578} a^{2} - \frac{11949101136443058328685344869177250653321}{24498727281240124099191850974287478308578} a + \frac{5931863792038136416045704260123183601826}{12249363640620062049595925487143739154289}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $13$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 8548806.54922059 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
A non-solvable group of order 240 |
The 18 conjugacy class representatives for $C_4.A_5$ |
Character table for $C_4.A_5$ |
Intermediate fields
6.2.14250625.2, Deg 12 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 40 siblings: | data not computed |
Arithmetically equvalently sibling: | 24.4.940350029043078386535797119140625.1 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/3.12.0.1}{12} }^{2}$ | R | $20{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{6}$ | $20{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{8}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{6}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | $20{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{8}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | $20{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
$5$ | 5.12.8.1 | $x^{12} - 30 x^{9} + 175 x^{6} + 500 x^{3} + 5000$ | $3$ | $4$ | $8$ | $C_3 : C_4$ | $[\ ]_{3}^{4}$ |
5.12.8.1 | $x^{12} - 30 x^{9} + 175 x^{6} + 500 x^{3} + 5000$ | $3$ | $4$ | $8$ | $C_3 : C_4$ | $[\ ]_{3}^{4}$ | |
$151$ | 151.4.2.2 | $x^{4} - 151 x^{2} + 273612$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
151.4.0.1 | $x^{4} - x + 6$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
151.8.4.1 | $x^{8} + 273612 x^{4} - 3442951 x^{2} + 18715881636$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
151.8.4.1 | $x^{8} + 273612 x^{4} - 3442951 x^{2} + 18715881636$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
1.151.2t1.a.a | $1$ | $ 151 $ | \(\Q(\sqrt{-151}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
2.3775.120.b.a | $2$ | $ 5^{2} \cdot 151 $ | 24.4.940350029043078386535797119140625.2 | $C_4.A_5$ (as 24T576) | $0$ | $0$ | |
2.3775.120.b.b | $2$ | $ 5^{2} \cdot 151 $ | 24.4.940350029043078386535797119140625.2 | $C_4.A_5$ (as 24T576) | $0$ | $0$ | |
2.3775.120.b.c | $2$ | $ 5^{2} \cdot 151 $ | 24.4.940350029043078386535797119140625.2 | $C_4.A_5$ (as 24T576) | $0$ | $0$ | |
2.3775.120.b.d | $2$ | $ 5^{2} \cdot 151 $ | 24.4.940350029043078386535797119140625.2 | $C_4.A_5$ (as 24T576) | $0$ | $0$ | |
* | 3.3775.12t76.a.a | $3$ | $ 5^{2} \cdot 151 $ | 10.0.49064203594375.1 | $A_5\times C_2$ (as 10T11) | $1$ | $1$ |
* | 3.3775.12t76.a.b | $3$ | $ 5^{2} \cdot 151 $ | 10.0.49064203594375.1 | $A_5\times C_2$ (as 10T11) | $1$ | $1$ |
3.570025.12t33.a.a | $3$ | $ 5^{2} \cdot 151^{2}$ | 5.1.570025.1 | $A_5$ (as 5T4) | $1$ | $-1$ | |
3.570025.12t33.a.b | $3$ | $ 5^{2} \cdot 151^{2}$ | 5.1.570025.1 | $A_5$ (as 5T4) | $1$ | $-1$ | |
4.570025.10t11.a.a | $4$ | $ 5^{2} \cdot 151^{2}$ | 10.0.49064203594375.1 | $A_5\times C_2$ (as 10T11) | $1$ | $0$ | |
4.570025.5t4.a.a | $4$ | $ 5^{2} \cdot 151^{2}$ | 5.1.570025.1 | $A_5$ (as 5T4) | $1$ | $0$ | |
4.570025.40t188.b.a | $4$ | $ 5^{2} \cdot 151^{2}$ | 24.4.940350029043078386535797119140625.2 | $C_4.A_5$ (as 24T576) | $0$ | $0$ | |
4.570025.40t188.b.b | $4$ | $ 5^{2} \cdot 151^{2}$ | 24.4.940350029043078386535797119140625.2 | $C_4.A_5$ (as 24T576) | $0$ | $0$ | |
5.2151844375.12t75.a.a | $5$ | $ 5^{4} \cdot 151^{3}$ | 10.0.49064203594375.1 | $A_5\times C_2$ (as 10T11) | $1$ | $-1$ | |
* | 5.14250625.6t12.a.a | $5$ | $ 5^{4} \cdot 151^{2}$ | 5.1.570025.1 | $A_5$ (as 5T4) | $1$ | $1$ |
* | 6.2151844375.24t576.b.a | $6$ | $ 5^{4} \cdot 151^{3}$ | 24.4.940350029043078386535797119140625.2 | $C_4.A_5$ (as 24T576) | $0$ | $0$ |
* | 6.2151844375.24t576.b.b | $6$ | $ 5^{4} \cdot 151^{3}$ | 24.4.940350029043078386535797119140625.2 | $C_4.A_5$ (as 24T576) | $0$ | $0$ |