Normalized defining polynomial
\( x^{20} - 4 x^{19} - 33 x^{18} + 120 x^{17} + 468 x^{16} - 1392 x^{15} - 3799 x^{14} + 8012 x^{13} + 19008 x^{12} - 23720 x^{11} - 57969 x^{10} + 31228 x^{9} + 101057 x^{8} - 964 x^{7} - 86922 x^{6} - 33928 x^{5} + 22258 x^{4} + 19672 x^{3} + 5396 x^{2} + 600 x + 20 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(8501150111111046013911040000000000=2^{36}\cdot 5^{10}\cdot 103^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $49.71$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 103$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{14} - \frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{15} - \frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{18} - \frac{1}{2} a^{14} - \frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{82002810274962237907721334} a^{19} - \frac{2704405118015265707845201}{27334270091654079302573778} a^{18} + \frac{1364143770733060560334377}{9111423363884693100857926} a^{17} + \frac{1319449647594948000613637}{13667135045827039651286889} a^{16} - \frac{2922987935774800558340902}{13667135045827039651286889} a^{15} - \frac{7289816583162278664412249}{27334270091654079302573778} a^{14} - \frac{10232864096351809811257237}{82002810274962237907721334} a^{13} - \frac{7604729200655643438996869}{82002810274962237907721334} a^{12} - \frac{18185975503173042723510886}{41001405137481118953860667} a^{11} + \frac{2830885305059406383648489}{82002810274962237907721334} a^{10} - \frac{7217584424270156738228443}{82002810274962237907721334} a^{9} + \frac{2736115770984254691790803}{9111423363884693100857926} a^{8} - \frac{25731620155556499284397157}{82002810274962237907721334} a^{7} + \frac{9740710922358043928959391}{41001405137481118953860667} a^{6} - \frac{7940071345925794755435694}{41001405137481118953860667} a^{5} - \frac{8656629233345913912580459}{27334270091654079302573778} a^{4} - \frac{10612522750198688723149003}{41001405137481118953860667} a^{3} + \frac{2512423881699924966250516}{41001405137481118953860667} a^{2} - \frac{7510918346344883245665982}{41001405137481118953860667} a + \frac{19437422686195060676558690}{41001405137481118953860667}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 70785617543.0 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 120 |
| The 7 conjugacy class representatives for $S_5$ |
| Character table for $S_5$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 10.10.3688067268608000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 5 sibling: | 5.5.13579520.1 |
| Degree 6 sibling: | 6.6.1357952000.1 |
| Degree 10 siblings: | 10.10.3688067268608000.1, Deg 10 |
| Degree 12 sibling: | 12.12.1844033634304000000.1 |
| Degree 15 sibling: | Deg 15 |
| Degree 20 siblings: | Deg 20, Deg 20 |
| Degree 24 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 40 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.16.8 | $x^{8} + 8 x^{5} + 12$ | $4$ | $2$ | $16$ | $S_4$ | $[8/3, 8/3]_{3}^{2}$ |
| 2.12.20.37 | $x^{12} - 6 x^{10} - x^{8} + 4 x^{6} + 3 x^{4} + 2 x^{2} - 7$ | $6$ | $2$ | $20$ | $S_4$ | $[8/3, 8/3]_{3}^{2}$ | |
| $5$ | 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $103$ | 103.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 103.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 103.4.2.1 | $x^{4} + 927 x^{2} + 265225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 103.4.2.1 | $x^{4} + 927 x^{2} + 265225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 103.4.2.1 | $x^{4} + 927 x^{2} + 265225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 103.4.2.1 | $x^{4} + 927 x^{2} + 265225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |