Properties

Label 103.4.2.1
Base \(\Q_{103}\)
Degree \(4\)
e \(2\)
f \(2\)
c \(2\)
Galois group $C_2^2$ (as 4T2)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{4} + 204 x^{3} + 10620 x^{2} + 22032 x + 1081216\) Copy content Toggle raw display

Invariants

Base field: $\Q_{103}$
Degree $d$: $4$
Ramification exponent $e$: $2$
Residue field degree $f$: $2$
Discriminant exponent $c$: $2$
Discriminant root field: $\Q_{103}$
Root number: $1$
$\card{ \Gal(K/\Q_{ 103 }) }$: $4$
This field is Galois and abelian over $\Q_{103}.$
Visible slopes:None

Intermediate fields

$\Q_{103}(\sqrt{3})$, $\Q_{103}(\sqrt{103})$, $\Q_{103}(\sqrt{103\cdot 3})$

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{103}(\sqrt{3})$ $\cong \Q_{103}(t)$ where $t$ is a root of \( x^{2} + 102 x + 5 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{2} + 103 \) $\ \in\Q_{103}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z + 2$
Associated inertia:$1$
Indices of inseparability:$[0]$

Invariants of the Galois closure

Galois group:$C_2^2$ (as 4T2)
Inertia group:Intransitive group isomorphic to $C_2$
Wild inertia group:$C_1$
Unramified degree:$2$
Tame degree:$2$
Wild slopes:None
Galois mean slope:$1/2$
Galois splitting model: $x^{4} + 927 x^{2} + 265225$ Copy content Toggle raw display