Show commands:
Magma
magma: G := TransitiveGroup(20, 32);
Group action invariants
Degree $n$: | $20$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $32$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $S_5$ | ||
Parity: | $1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| magma: NilpotencyClass(G);
|
$\card{\Aut(F/K)}$: | $2$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,5,9,14,18)(2,6,10,13,17)(3,7,12,16,20)(4,8,11,15,19), (1,3)(2,4)(5,13)(6,14)(7,8)(9,10)(11,12)(15,17)(16,18)(19,20) | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: None
Degree 5: None
Degree 10: $S_5$
Low degree siblings
5T5, 6T14, 10T12, 10T13, 12T74, 15T10, 20T30, 20T35, 24T202, 30T22, 30T25, 30T27, 40T62Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{20}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{10}$ | $10$ | $2$ | $10$ | $( 1, 2)( 3,19)( 4,20)( 5, 6)( 7,14)( 8,13)( 9,16)(10,15)(11,12)(17,18)$ |
2B | $2^{8},1^{4}$ | $15$ | $2$ | $8$ | $( 1, 5)( 2, 6)( 7,20)( 8,19)( 9,18)(10,17)(11,15)(12,16)$ |
3A | $3^{6},1^{2}$ | $20$ | $3$ | $12$ | $( 1, 9,15)( 2,10,16)( 3,17,20)( 4,18,19)( 7,12,13)( 8,11,14)$ |
4A | $4^{4},2^{2}$ | $30$ | $4$ | $14$ | $( 1, 7, 5,20)( 2, 8, 6,19)( 3,14)( 4,13)( 9,12,18,16)(10,11,17,15)$ |
5A | $5^{4}$ | $24$ | $5$ | $16$ | $( 1, 4,18,11,14)( 2, 3,17,12,13)( 5,15, 8,19, 9)( 6,16, 7,20,10)$ |
6A | $6^{3},2$ | $20$ | $6$ | $16$ | $( 1, 2)( 3,14,10,19, 7,15)( 4,13, 9,20, 8,16)( 5,12,18, 6,11,17)$ |
Malle's constant $a(G)$: $1/8$
magma: ConjugacyClasses(G);
Group invariants
Order: | $120=2^{3} \cdot 3 \cdot 5$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | no | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | ||
Label: | 120.34 | magma: IdentifyGroup(G);
| |
Character table: |
1A | 2A | 2B | 3A | 4A | 5A | 6A | ||
Size | 1 | 10 | 15 | 20 | 30 | 24 | 20 | |
2 P | 1A | 1A | 1A | 3A | 2B | 5A | 3A | |
3 P | 1A | 2A | 2B | 1A | 4A | 5A | 2A | |
5 P | 1A | 2A | 2B | 3A | 4A | 1A | 6A | |
Type | ||||||||
120.34.1a | R | |||||||
120.34.1b | R | |||||||
120.34.4a | R | |||||||
120.34.4b | R | |||||||
120.34.5a | R | |||||||
120.34.5b | R | |||||||
120.34.6a | R |
magma: CharacterTable(G);