Properties

Label 20T32
Degree $20$
Order $120$
Cyclic no
Abelian no
Solvable no
Primitive no
$p$-group no
Group: $S_5$

Related objects

Downloads

Learn more

Show commands: Magma

magma: G := TransitiveGroup(20, 32);
 

Group action invariants

Degree $n$:  $20$
magma: t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $32$
magma: t, n := TransitiveGroupIdentification(G); t;
 
Group:  $S_5$
Parity:  $1$
magma: IsEven(G);
 
Primitive:  no
magma: IsPrimitive(G);
 
Nilpotency class:  $-1$ (not nilpotent)
magma: NilpotencyClass(G);
 
$\card{\Aut(F/K)}$:  $2$
magma: Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  (1,5,9,14,18)(2,6,10,13,17)(3,7,12,16,20)(4,8,11,15,19), (1,3)(2,4)(5,13)(6,14)(7,8)(9,10)(11,12)(15,17)(16,18)(19,20)
magma: Generators(G);
 

Low degree resolvents

|G/N|Galois groups for stem field(s)
$2$:  $C_2$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 4: None

Degree 5: None

Degree 10: $S_5$

Low degree siblings

5T5, 6T14, 10T12, 10T13, 12T74, 15T10, 20T30, 20T35, 24T202, 30T22, 30T25, 30T27, 40T62

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

Cycle TypeSizeOrderRepresentative
$ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ $1$ $1$ $()$
$ 3, 3, 3, 3, 3, 3, 1, 1 $ $20$ $3$ $( 3, 7,10)( 4, 8, 9)( 5,11,18)( 6,12,17)(13,16,20)(14,15,19)$
$ 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ $15$ $2$ $( 3,13)( 4,14)( 7,20)( 8,19)( 9,15)(10,16)(11,18)(12,17)$
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ $10$ $2$ $( 1, 2)( 3, 4)( 5,17)( 6,18)( 7, 9)( 8,10)(11,12)(13,15)(14,16)(19,20)$
$ 6, 6, 6, 2 $ $20$ $6$ $( 1, 2)( 3,14,10,19, 7,15)( 4,13, 9,20, 8,16)( 5,12,18, 6,11,17)$
$ 4, 4, 4, 4, 2, 2 $ $30$ $4$ $( 1, 3, 5,13)( 2, 4, 6,14)( 7,19)( 8,20)( 9,17,11,16)(10,18,12,15)$
$ 5, 5, 5, 5 $ $24$ $5$ $( 1, 4, 5,11,15)( 2, 3, 6,12,16)( 7,17,13,10,20)( 8,18,14, 9,19)$

magma: ConjugacyClasses(G);
 

Group invariants

Order:  $120=2^{3} \cdot 3 \cdot 5$
magma: Order(G);
 
Cyclic:  no
magma: IsCyclic(G);
 
Abelian:  no
magma: IsAbelian(G);
 
Solvable:  no
magma: IsSolvable(G);
 
Label:  120.34
magma: IdentifyGroup(G);
 
Character table:   
     2  3  1  3  2  1  2  .
     3  1  1  .  1  1  .  .
     5  1  .  .  .  .  .  1

       1a 3a 2a 2b 6a 4a 5a
    2P 1a 3a 1a 1a 3a 2a 5a
    3P 1a 1a 2a 2b 2b 4a 5a
    5P 1a 3a 2a 2b 6a 4a 1a

X.1     1  1  1  1  1  1  1
X.2     1  1  1 -1 -1 -1  1
X.3     4  1  . -2  1  . -1
X.4     4  1  .  2 -1  . -1
X.5     5 -1  1  1  1 -1  .
X.6     5 -1  1 -1 -1  1  .
X.7     6  . -2  .  .  .  1

magma: CharacterTable(G);