Properties

Label 2.12.20.37
Base \(\Q_{2}\)
Degree \(12\)
e \(6\)
f \(2\)
c \(20\)
Galois group $S_4$ (as 12T9)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{12} + 10 x^{11} + 51 x^{10} + 176 x^{9} + 450 x^{8} + 870 x^{7} + 1299 x^{6} + 1516 x^{5} + 1250 x^{4} + 542 x^{3} + 67 x^{2} - 56 x + 7\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $12$
Ramification exponent $e$: $6$
Residue field degree $f$: $2$
Discriminant exponent $c$: $20$
Discriminant root field: $\Q_{2}$
Root number: $1$
$\card{ \Aut(K/\Q_{ 2 }) }$: $4$
This field is not Galois over $\Q_{2}.$
Visible slopes:$[8/3]$

Intermediate fields

$\Q_{2}(\sqrt{5})$, 2.3.2.1 x3, 2.6.4.1, 2.6.10.2, 2.6.10.3

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}(\sqrt{5})$ $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{2} + x + 1 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{6} + 2 x^{5} + 2 x^{4} + 4 x^{3} + 2 x^{2} + 6 \) $\ \in\Q_{2}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z + 1$,$z^{4} + z^{2} + 1$
Associated inertia:$1$,$1$
Indices of inseparability:$[5, 0]$

Invariants of the Galois closure

Galois group:$S_4$ (as 12T9)
Inertia group:Intransitive group isomorphic to $A_4$
Wild inertia group:$C_2^2$
Unramified degree:$2$
Tame degree:$3$
Wild slopes:$[8/3, 8/3]$
Galois mean slope:$13/6$
Galois splitting model:$x^{12} + 3 x^{10} - 5 x^{6} + 3 x^{2} + 1$