Normalized defining polynomial
\( x^{16} + 16x^{14} + 124x^{12} + 576x^{10} + 1594x^{8} + 2544x^{6} + 2196x^{4} + 864x^{2} + 81 \)
Invariants
| Degree: | $16$ |
| |
| Signature: | $[0, 8]$ |
| |
| Discriminant: |
\(5976745079881894723584\)
\(\medspace = 2^{66}\cdot 3^{4}\)
|
| |
| Root discriminant: | \(22.96\) |
| |
| Galois root discriminant: | $2^{141/32}3^{1/2}\approx 36.72603516807517$ | ||
| Ramified primes: |
\(2\), \(3\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_2^2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2}a^{8}-\frac{1}{2}$, $\frac{1}{4}a^{9}-\frac{1}{4}a^{8}-\frac{1}{2}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{4}a+\frac{1}{4}$, $\frac{1}{12}a^{10}+\frac{1}{12}a^{8}+\frac{1}{3}a^{6}+\frac{1}{12}a^{2}-\frac{1}{4}$, $\frac{1}{12}a^{11}+\frac{1}{12}a^{9}+\frac{1}{3}a^{7}+\frac{1}{12}a^{3}-\frac{1}{4}a$, $\frac{1}{36}a^{12}+\frac{1}{36}a^{10}-\frac{2}{9}a^{8}+\frac{1}{3}a^{6}+\frac{1}{36}a^{4}+\frac{1}{4}a^{2}$, $\frac{1}{36}a^{13}+\frac{1}{36}a^{11}+\frac{1}{36}a^{9}-\frac{1}{4}a^{8}-\frac{1}{6}a^{7}-\frac{1}{2}a^{6}-\frac{17}{36}a^{5}-\frac{1}{2}a^{4}-\frac{1}{4}a^{3}-\frac{1}{2}a^{2}-\frac{1}{4}a+\frac{1}{4}$, $\frac{1}{756}a^{14}-\frac{1}{378}a^{12}-\frac{29}{756}a^{10}-\frac{1}{21}a^{8}-\frac{215}{756}a^{6}+\frac{61}{126}a^{4}-\frac{5}{84}a^{2}-\frac{2}{7}$, $\frac{1}{756}a^{15}-\frac{1}{378}a^{13}-\frac{29}{756}a^{11}-\frac{1}{21}a^{9}-\frac{215}{756}a^{7}+\frac{61}{126}a^{5}-\frac{5}{84}a^{3}-\frac{2}{7}a$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
| Rank: | $7$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{13}{18}a^{14}+\frac{379}{36}a^{12}+\frac{1343}{18}a^{10}+\frac{11171}{36}a^{8}+\frac{12829}{18}a^{6}+\frac{30035}{36}a^{4}+\frac{2513}{6}a^{2}+\frac{175}{4}$, $\frac{67}{756}a^{14}-\frac{521}{378}a^{12}-\frac{7801}{756}a^{10}-\frac{2879}{63}a^{8}-\frac{87655}{756}a^{6}-\frac{19529}{126}a^{4}-\frac{7505}{84}a^{2}-\frac{62}{7}$, $\frac{47}{378}a^{14}+\frac{1345}{756}a^{12}+\frac{9391}{756}a^{10}+\frac{6401}{126}a^{8}+\frac{42941}{378}a^{6}+\frac{3627}{28}a^{4}+\frac{5515}{84}a^{2}+\frac{121}{14}$, $\frac{271}{378}a^{14}-\frac{8009}{756}a^{12}-\frac{57383}{756}a^{10}-\frac{20137}{63}a^{8}-\frac{283069}{378}a^{6}-\frac{226151}{252}a^{4}-\frac{38611}{84}a^{2}-\frac{330}{7}$, $\frac{1115}{756}a^{14}+\frac{16271}{756}a^{12}+\frac{115379}{756}a^{10}+\frac{160031}{252}a^{8}+\frac{1103183}{756}a^{6}+\frac{143327}{84}a^{4}+\frac{71719}{84}a^{2}+\frac{2483}{28}$, $\frac{212}{63}a^{15}+\frac{2173}{756}a^{14}+\frac{3055}{63}a^{13}+\frac{16055}{378}a^{12}+\frac{85693}{252}a^{11}+\frac{229975}{756}a^{10}+\frac{351791}{252}a^{9}+\frac{80645}{63}a^{8}+\frac{197432}{63}a^{7}+\frac{2263477}{756}a^{6}+\frac{223010}{63}a^{5}+\frac{449975}{126}a^{4}+\frac{142547}{84}a^{3}+\frac{151955}{84}a^{2}+\frac{4799}{28}a+\frac{1289}{7}$, $\frac{1279}{189}a^{15}+\frac{4519}{126}a^{14}+\frac{17644}{189}a^{13}+\frac{131843}{252}a^{12}+\frac{475819}{756}a^{11}+\frac{467113}{126}a^{10}+\frac{619673}{252}a^{9}+\frac{1294267}{84}a^{8}+\frac{952129}{189}a^{7}+\frac{4449775}{126}a^{6}+\frac{310003}{63}a^{5}+\frac{1148883}{28}a^{4}+\frac{163903}{84}a^{3}+\frac{849901}{42}a^{2}+\frac{5153}{28}a+\frac{56781}{28}$
|
| |
| Regulator: | \( 26051.984856964962 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 26051.984856964962 \cdot 1}{2\cdot\sqrt{5976745079881894723584}}\cr\approx \mathstrut & 0.409277058882039 \end{aligned}\]
Galois group
$C_2^5:C_4$ (as 16T227):
| A solvable group of order 128 |
| The 26 conjugacy class representatives for $C_2^5:C_4$ |
| Character table for $C_2^5:C_4$ |
Intermediate fields
| \(\Q(\sqrt{2}) \), 4.2.2048.1, \(\Q(\zeta_{16})^+\), 4.2.1024.1, 8.0.19327352832.7, 8.0.19327352832.6, 8.4.67108864.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/padicField/5.8.0.1}{8} }^{2}$ | ${\href{/padicField/7.2.0.1}{2} }^{8}$ | ${\href{/padicField/11.4.0.1}{4} }^{4}$ | ${\href{/padicField/13.8.0.1}{8} }^{2}$ | ${\href{/padicField/17.4.0.1}{4} }^{4}$ | ${\href{/padicField/19.4.0.1}{4} }^{4}$ | ${\href{/padicField/23.4.0.1}{4} }^{2}{,}\,{\href{/padicField/23.2.0.1}{2} }^{4}$ | ${\href{/padicField/29.8.0.1}{8} }^{2}$ | ${\href{/padicField/31.4.0.1}{4} }^{2}{,}\,{\href{/padicField/31.2.0.1}{2} }^{2}{,}\,{\href{/padicField/31.1.0.1}{1} }^{4}$ | ${\href{/padicField/37.8.0.1}{8} }^{2}$ | ${\href{/padicField/41.2.0.1}{2} }^{8}$ | ${\href{/padicField/43.4.0.1}{4} }^{4}$ | ${\href{/padicField/47.2.0.1}{2} }^{4}{,}\,{\href{/padicField/47.1.0.1}{1} }^{8}$ | ${\href{/padicField/53.8.0.1}{8} }^{2}$ | ${\href{/padicField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.16.66h1.262 | $x^{16} + 8 x^{14} + 4 x^{12} + 16 x^{11} + 8 x^{10} + 16 x^{9} + 16 x^{7} + 8 x^{6} + 16 x^{3} + 2$ | $16$ | $1$ | $66$ | 16T227 | $$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, 5]^{2}$$ |
|
\(3\)
| 3.4.1.0a1.1 | $x^{4} + 2 x^{3} + 2$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ |
| 3.4.1.0a1.1 | $x^{4} + 2 x^{3} + 2$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ | |
| 3.4.2.4a1.2 | $x^{8} + 4 x^{7} + 4 x^{6} + 4 x^{4} + 8 x^{3} + 7$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $$[\ ]_{2}^{4}$$ |