Normalized defining polynomial
\( x^{16} - 8x^{14} + 36x^{12} - 88x^{10} + 146x^{8} - 328x^{6} + 60x^{4} + 328x^{2} + 49 \)
Invariants
Degree: | $16$ |
| |
Signature: | $[4, 6]$ |
| |
Discriminant: |
\(1936465405881733890441216\)
\(\medspace = 2^{68}\cdot 3^{8}\)
|
| |
Root discriminant: | \(32.96\) |
| |
Galois root discriminant: | $2^{141/32}3^{1/2}\approx 36.72603516807517$ | ||
Ramified primes: |
\(2\), \(3\)
|
| |
Discriminant root field: | \(\Q\) | ||
$\Aut(K/\Q)$: | $C_2^2$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
This field has no CM subfields. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{8}a^{8}+\frac{1}{4}a^{4}-\frac{1}{8}$, $\frac{1}{8}a^{9}+\frac{1}{4}a^{5}-\frac{1}{8}a$, $\frac{1}{8}a^{10}+\frac{1}{4}a^{6}-\frac{1}{8}a^{2}$, $\frac{1}{8}a^{11}+\frac{1}{4}a^{7}-\frac{1}{8}a^{3}$, $\frac{1}{8}a^{12}+\frac{3}{8}a^{4}+\frac{1}{4}$, $\frac{1}{56}a^{13}+\frac{1}{56}a^{9}-\frac{3}{7}a^{7}-\frac{11}{56}a^{5}-\frac{3}{7}a^{3}+\frac{1}{56}a$, $\frac{1}{4785424}a^{14}-\frac{5123}{683632}a^{12}+\frac{239947}{4785424}a^{10}+\frac{176117}{4785424}a^{8}-\frac{1}{2}a^{7}+\frac{44313}{4785424}a^{6}-\frac{1}{2}a^{5}-\frac{2386261}{4785424}a^{4}-\frac{1}{2}a^{3}+\frac{1403599}{4785424}a^{2}-\frac{1}{2}a+\frac{211503}{683632}$, $\frac{1}{4785424}a^{15}-\frac{5123}{683632}a^{13}+\frac{239947}{4785424}a^{11}+\frac{176117}{4785424}a^{9}+\frac{44313}{4785424}a^{7}-\frac{1}{2}a^{6}-\frac{2386261}{4785424}a^{5}-\frac{1}{2}a^{4}+\frac{1403599}{4785424}a^{3}-\frac{1}{2}a^{2}+\frac{211503}{683632}a-\frac{1}{2}$
Monogenic: | No | |
Index: | Not computed | |
Inessential primes: | $7$ |
Class group and class number
Ideal class group: | Trivial group, which has order $1$ |
| |
Narrow class group: | $C_{2}$, which has order $2$ |
|
Unit group
Rank: | $9$ |
| |
Torsion generator: |
\( -1 \)
(order $2$)
|
| |
Fundamental units: |
$\frac{2123}{598178}a^{14}+\frac{4215}{170908}a^{12}-\frac{29457}{299089}a^{10}+\frac{228807}{1196356}a^{8}-\frac{162553}{598178}a^{6}+\frac{1022509}{1196356}a^{4}+\frac{290604}{299089}a^{2}-\frac{390195}{170908}$, $\frac{1209}{170908}a^{14}-\frac{18815}{341816}a^{12}+\frac{87367}{341816}a^{10}-\frac{111369}{170908}a^{8}+\frac{104197}{85454}a^{6}-\frac{851377}{341816}a^{4}+\frac{54045}{341816}a^{2}+\frac{79293}{85454}$, $\frac{5611}{598178}a^{15}+\frac{186693}{2392712}a^{13}-\frac{871201}{2392712}a^{11}+\frac{2254807}{2392712}a^{9}-\frac{1946375}{1196356}a^{7}+\frac{7962781}{2392712}a^{5}-\frac{2536111}{2392712}a^{3}-\frac{7331741}{2392712}a$, $\frac{2839}{2392712}a^{15}+\frac{33665}{2392712}a^{13}-\frac{22985}{299089}a^{11}+\frac{84767}{341816}a^{9}-\frac{1127221}{2392712}a^{7}+\frac{1767301}{2392712}a^{5}-\frac{1394671}{1196356}a^{3}+\frac{112233}{2392712}a$, $\frac{2839}{2392712}a^{15}-\frac{1209}{170908}a^{14}-\frac{33665}{2392712}a^{13}+\frac{18815}{341816}a^{12}+\frac{22985}{299089}a^{11}-\frac{87367}{341816}a^{10}-\frac{84767}{341816}a^{9}+\frac{111369}{170908}a^{8}+\frac{1127221}{2392712}a^{7}-\frac{104197}{85454}a^{6}-\frac{1767301}{2392712}a^{5}+\frac{851377}{341816}a^{4}+\frac{1394671}{1196356}a^{3}-\frac{54045}{341816}a^{2}-\frac{112233}{2392712}a+\frac{6161}{85454}$, $\frac{152}{299089}a^{15}+\frac{12547}{2392712}a^{14}-\frac{6359}{598178}a^{13}-\frac{16873}{341816}a^{12}+\frac{163777}{2392712}a^{11}+\frac{583313}{2392712}a^{10}-\frac{168271}{598178}a^{9}-\frac{1724067}{2392712}a^{8}+\frac{750653}{1196356}a^{7}+\frac{3278739}{2392712}a^{6}-\frac{645243}{598178}a^{5}-\frac{6393291}{2392712}a^{4}+\frac{4917247}{2392712}a^{3}+\frac{7774469}{2392712}a^{2}+\frac{376709}{598178}a+\frac{295987}{341816}$, $\frac{14995}{1196356}a^{15}-\frac{144581}{1196356}a^{13}+\frac{1424635}{2392712}a^{11}-\frac{2046897}{1196356}a^{9}+\frac{925095}{299089}a^{7}-\frac{7264773}{1196356}a^{5}+\frac{14034425}{2392712}a^{3}+\frac{9034043}{1196356}a$, $\frac{808}{299089}a^{15}-\frac{21363}{2392712}a^{14}-\frac{1647}{341816}a^{13}+\frac{9401}{170908}a^{12}-\frac{29073}{1196356}a^{11}-\frac{62446}{299089}a^{10}+\frac{171433}{598178}a^{9}+\frac{750327}{2392712}a^{8}-\frac{470641}{598178}a^{7}-\frac{939201}{2392712}a^{6}+\frac{2518605}{2392712}a^{5}+\frac{457048}{299089}a^{4}-\frac{5832675}{1196356}a^{3}+\frac{3630197}{1196356}a^{2}-\frac{11577}{170908}a+\frac{127115}{341816}$, $\frac{206597}{2392712}a^{15}+\frac{119295}{1196356}a^{14}+\frac{165401}{299089}a^{13}-\frac{54729}{85454}a^{12}-\frac{650957}{299089}a^{11}+\frac{6011931}{2392712}a^{10}+\frac{9187481}{2392712}a^{9}-\frac{5311981}{1196356}a^{8}-\frac{12636671}{2392712}a^{7}+\frac{1774849}{299089}a^{6}+\frac{21504713}{1196356}a^{5}-\frac{6276857}{299089}a^{4}+\frac{4703353}{170908}a^{3}-\frac{78544695}{2392712}a^{2}+\frac{19770455}{2392712}a-\frac{1692189}{170908}$
|
| |
Regulator: | \( 3238584.386109062 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{6}\cdot 3238584.386109062 \cdot 1}{2\cdot\sqrt{1936465405881733890441216}}\cr\approx \mathstrut & 1.14556449110381 \end{aligned}\]
Galois group
$C_2^5:C_4$ (as 16T259):
A solvable group of order 128 |
The 26 conjugacy class representatives for $C_2^5:C_4$ |
Character table for $C_2^5:C_4$ |
Intermediate fields
\(\Q(\sqrt{2}) \), 4.4.18432.1, 8.2.173946175488.9, 8.6.173946175488.2, 8.4.21743271936.5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | ${\href{/padicField/5.8.0.1}{8} }^{2}$ | ${\href{/padicField/7.2.0.1}{2} }^{4}{,}\,{\href{/padicField/7.1.0.1}{1} }^{8}$ | ${\href{/padicField/11.4.0.1}{4} }^{4}$ | ${\href{/padicField/13.8.0.1}{8} }^{2}$ | ${\href{/padicField/17.4.0.1}{4} }^{4}$ | ${\href{/padicField/19.4.0.1}{4} }^{4}$ | ${\href{/padicField/23.4.0.1}{4} }^{4}$ | ${\href{/padicField/29.8.0.1}{8} }^{2}$ | ${\href{/padicField/31.4.0.1}{4} }^{4}$ | ${\href{/padicField/37.8.0.1}{8} }^{2}$ | ${\href{/padicField/41.2.0.1}{2} }^{6}{,}\,{\href{/padicField/41.1.0.1}{1} }^{4}$ | ${\href{/padicField/43.4.0.1}{4} }^{4}$ | ${\href{/padicField/47.2.0.1}{2} }^{6}{,}\,{\href{/padicField/47.1.0.1}{1} }^{4}$ | ${\href{/padicField/53.8.0.1}{8} }^{2}$ | ${\href{/padicField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.1.16.68h1.1892 | $x^{16} + 8 x^{14} + 16 x^{13} + 8 x^{12} + 8 x^{10} + 16 x^{9} + 4 x^{8} + 16 x^{5} + 8 x^{4} + 50$ | $16$ | $1$ | $68$ | 16T259 | $$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, 5]^{2}$$ |
\(3\)
| 3.4.2.4a1.2 | $x^{8} + 4 x^{7} + 4 x^{6} + 4 x^{4} + 8 x^{3} + 7$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $$[\ ]_{2}^{4}$$ |
3.4.2.4a1.2 | $x^{8} + 4 x^{7} + 4 x^{6} + 4 x^{4} + 8 x^{3} + 7$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $$[\ ]_{2}^{4}$$ |