Normalized defining polynomial
\( x^{16} - 20x^{12} + 32x^{10} + 238x^{8} - 96x^{6} - 180x^{4} + 81 \)
Invariants
Degree: | $16$ |
| |
Signature: | $[0, 8]$ |
| |
Discriminant: |
\(5976745079881894723584\)
\(\medspace = 2^{66}\cdot 3^{4}\)
|
| |
Root discriminant: | \(22.96\) |
| |
Galois root discriminant: | $2^{141/32}3^{1/2}\approx 36.72603516807517$ | ||
Ramified primes: |
\(2\), \(3\)
|
| |
Discriminant root field: | \(\Q\) | ||
$\Aut(K/\Q)$: | $C_2^2$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
Maximal CM subfield: | 4.0.2048.2 |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2}a^{6}-\frac{1}{2}a^{4}-\frac{1}{2}a^{2}-\frac{1}{2}$, $\frac{1}{2}a^{7}-\frac{1}{2}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a$, $\frac{1}{2}a^{8}-\frac{1}{2}$, $\frac{1}{2}a^{9}-\frac{1}{2}a$, $\frac{1}{42}a^{10}+\frac{1}{7}a^{8}+\frac{2}{21}a^{6}+\frac{10}{21}a^{4}+\frac{1}{42}a^{2}-\frac{3}{7}$, $\frac{1}{84}a^{11}-\frac{1}{84}a^{10}-\frac{5}{28}a^{9}+\frac{5}{28}a^{8}+\frac{1}{21}a^{7}-\frac{1}{21}a^{6}+\frac{5}{21}a^{5}-\frac{5}{21}a^{4}-\frac{41}{84}a^{3}+\frac{41}{84}a^{2}+\frac{1}{28}a-\frac{1}{28}$, $\frac{1}{1764}a^{12}+\frac{1}{98}a^{10}+\frac{223}{1764}a^{8}-\frac{29}{882}a^{6}-\frac{347}{1764}a^{4}+\frac{10}{147}a^{2}+\frac{11}{196}$, $\frac{1}{1764}a^{13}-\frac{1}{588}a^{11}-\frac{1}{84}a^{10}-\frac{86}{441}a^{9}+\frac{5}{28}a^{8}-\frac{71}{882}a^{7}-\frac{1}{21}a^{6}-\frac{767}{1764}a^{5}-\frac{5}{21}a^{4}-\frac{87}{196}a^{3}+\frac{41}{84}a^{2}-\frac{47}{98}a-\frac{1}{28}$, $\frac{1}{37044}a^{14}+\frac{1}{4116}a^{12}+\frac{61}{37044}a^{10}+\frac{83}{5292}a^{8}+\frac{781}{5292}a^{6}+\frac{4021}{12348}a^{4}-\frac{305}{4116}a^{2}+\frac{457}{1372}$, $\frac{1}{37044}a^{15}+\frac{1}{4116}a^{13}+\frac{61}{37044}a^{11}+\frac{83}{5292}a^{9}+\frac{781}{5292}a^{7}+\frac{4021}{12348}a^{5}-\frac{305}{4116}a^{3}+\frac{457}{1372}a$
Monogenic: | No | |
Index: | Not computed | |
Inessential primes: | $7$ |
Class group and class number
Ideal class group: | Trivial group, which has order $1$ |
| |
Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
Rank: | $7$ |
| |
Torsion generator: |
\( -1 \)
(order $2$)
|
| |
Fundamental units: |
$\frac{5}{6174}a^{14}+\frac{3}{1372}a^{12}-\frac{115}{6174}a^{10}-\frac{43}{1764}a^{8}+\frac{281}{882}a^{6}+\frac{2123}{4116}a^{4}-\frac{2699}{2058}a^{2}-\frac{1291}{1372}$, $\frac{73}{18522}a^{14}+\frac{37}{6174}a^{12}-\frac{703}{9261}a^{10}+\frac{5}{2646}a^{8}+\frac{421}{378}a^{6}+\frac{6533}{6174}a^{4}-\frac{1175}{1029}a^{2}-\frac{99}{686}$, $\frac{41}{5292}a^{14}+\frac{13}{1764}a^{12}-\frac{793}{5292}a^{10}+\frac{505}{5292}a^{8}+\frac{10439}{5292}a^{6}+\frac{215}{196}a^{4}-\frac{5}{4}a^{2}-\frac{211}{196}$, $\frac{25}{2646}a^{15}-\frac{47}{12348}a^{14}-\frac{11}{1764}a^{13}-\frac{17}{12348}a^{12}-\frac{491}{2646}a^{11}+\frac{913}{12348}a^{10}+\frac{319}{756}a^{9}-\frac{55}{588}a^{8}+\frac{745}{378}a^{7}-\frac{505}{588}a^{6}-\frac{1315}{588}a^{5}-\frac{479}{12348}a^{4}-\frac{149}{294}a^{3}+\frac{445}{4116}a^{2}+\frac{37}{196}a+\frac{1279}{1372}$, $\frac{13}{5292}a^{15}-\frac{31}{12348}a^{14}-\frac{1}{126}a^{13}+\frac{47}{4116}a^{12}-\frac{305}{5292}a^{11}+\frac{671}{12348}a^{10}+\frac{601}{2646}a^{9}-\frac{533}{1764}a^{8}+\frac{2677}{5292}a^{7}-\frac{559}{1764}a^{6}-\frac{1003}{441}a^{5}+\frac{11597}{4116}a^{4}-\frac{395}{196}a^{3}+\frac{2339}{4116}a^{2}+\frac{41}{49}a-\frac{445}{1372}$, $\frac{148}{9261}a^{15}-\frac{59}{5292}a^{14}-\frac{5}{12348}a^{13}+\frac{5}{252}a^{12}+\frac{5947}{18522}a^{11}+\frac{1171}{5292}a^{10}-\frac{2729}{5292}a^{9}-\frac{3961}{5292}a^{8}-\frac{10133}{2646}a^{7}-\frac{10421}{5292}a^{6}+\frac{7157}{4116}a^{5}+\frac{3275}{588}a^{4}+\frac{958}{343}a^{3}-\frac{139}{588}a^{2}-\frac{3221}{1372}a-\frac{285}{196}$, $\frac{1609}{4116}a^{15}-\frac{2963}{9261}a^{14}+\frac{1663}{6174}a^{13}-\frac{66}{343}a^{12}-\frac{10637}{1372}a^{11}+\frac{117629}{18522}a^{10}+\frac{6535}{882}a^{9}-\frac{8824}{1323}a^{8}+\frac{175663}{1764}a^{7}-\frac{105818}{1323}a^{6}+\frac{154753}{6174}a^{5}-\frac{52163}{3087}a^{4}-\frac{253301}{4116}a^{3}+\frac{109475}{2058}a^{2}-\frac{30879}{686}a+\frac{13114}{343}$
|
| |
Regulator: | \( 72862.88489809254 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 72862.88489809254 \cdot 1}{2\cdot\sqrt{5976745079881894723584}}\cr\approx \mathstrut & 1.14467697553491 \end{aligned}\]
Galois group
$C_2^5:C_4$ (as 16T227):
A solvable group of order 128 |
The 26 conjugacy class representatives for $C_2^5:C_4$ |
Character table for $C_2^5:C_4$ |
Intermediate fields
\(\Q(\sqrt{2}) \), 4.2.2048.1, 4.0.2048.2, 4.2.1024.1, 8.4.19327352832.2, 8.0.19327352832.6, 8.0.67108864.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | ${\href{/padicField/5.8.0.1}{8} }^{2}$ | ${\href{/padicField/7.2.0.1}{2} }^{4}{,}\,{\href{/padicField/7.1.0.1}{1} }^{8}$ | ${\href{/padicField/11.4.0.1}{4} }^{4}$ | ${\href{/padicField/13.8.0.1}{8} }^{2}$ | ${\href{/padicField/17.4.0.1}{4} }^{4}$ | ${\href{/padicField/19.4.0.1}{4} }^{4}$ | ${\href{/padicField/23.4.0.1}{4} }^{2}{,}\,{\href{/padicField/23.2.0.1}{2} }^{2}{,}\,{\href{/padicField/23.1.0.1}{1} }^{4}$ | ${\href{/padicField/29.8.0.1}{8} }^{2}$ | ${\href{/padicField/31.4.0.1}{4} }^{2}{,}\,{\href{/padicField/31.2.0.1}{2} }^{4}$ | ${\href{/padicField/37.8.0.1}{8} }^{2}$ | ${\href{/padicField/41.2.0.1}{2} }^{8}$ | ${\href{/padicField/43.4.0.1}{4} }^{4}$ | ${\href{/padicField/47.2.0.1}{2} }^{8}$ | ${\href{/padicField/53.8.0.1}{8} }^{2}$ | ${\href{/padicField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.1.16.66h1.146 | $x^{16} + 4 x^{12} + 16 x^{11} + 8 x^{10} + 16 x^{9} + 8 x^{6} + 16 x^{3} + 2$ | $16$ | $1$ | $66$ | 16T227 | $$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, 5]^{2}$$ |
\(3\)
| 3.4.1.0a1.1 | $x^{4} + 2 x^{3} + 2$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ |
3.4.1.0a1.1 | $x^{4} + 2 x^{3} + 2$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ | |
3.4.2.4a1.2 | $x^{8} + 4 x^{7} + 4 x^{6} + 4 x^{4} + 8 x^{3} + 7$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $$[\ ]_{2}^{4}$$ |