Normalized defining polynomial
\( x^{16} - 16x^{14} + 108x^{12} - 352x^{10} + 474x^{8} - 304x^{6} + 260x^{4} - 192x^{2} + 49 \)
Invariants
| Degree: | $16$ |
| |
| Signature: | $[8, 4]$ |
| |
| Discriminant: |
\(484116351470433472610304\)
\(\medspace = 2^{66}\cdot 3^{8}\)
|
| |
| Root discriminant: | \(30.22\) |
| |
| Galois root discriminant: | $2^{141/32}3^{1/2}\approx 36.72603516807517$ | ||
| Ramified primes: |
\(2\), \(3\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_2^2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2}a^{8}-\frac{1}{2}$, $\frac{1}{4}a^{9}-\frac{1}{4}a^{8}-\frac{1}{2}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{4}a+\frac{1}{4}$, $\frac{1}{4}a^{10}-\frac{1}{4}a^{8}+\frac{1}{4}a^{2}-\frac{1}{4}$, $\frac{1}{4}a^{11}-\frac{1}{4}a^{8}-\frac{1}{2}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{4}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a+\frac{1}{4}$, $\frac{1}{4}a^{12}-\frac{1}{4}a^{8}+\frac{1}{4}a^{4}-\frac{1}{4}$, $\frac{1}{28}a^{13}+\frac{1}{14}a^{11}-\frac{3}{28}a^{9}+\frac{5}{28}a^{5}+\frac{5}{14}a^{3}+\frac{13}{28}a$, $\frac{1}{1094044}a^{14}-\frac{9637}{1094044}a^{12}-\frac{636}{273511}a^{10}-\frac{10037}{78146}a^{8}+\frac{506301}{1094044}a^{6}-\frac{438337}{1094044}a^{4}-\frac{6393}{273511}a^{2}+\frac{29653}{78146}$, $\frac{1}{1094044}a^{15}-\frac{9637}{1094044}a^{13}-\frac{636}{273511}a^{11}+\frac{18999}{156292}a^{9}-\frac{1}{4}a^{8}-\frac{40721}{1094044}a^{7}-\frac{1}{2}a^{6}+\frac{108685}{1094044}a^{5}-\frac{1}{2}a^{4}+\frac{260725}{547022}a^{3}-\frac{1}{2}a^{2}+\frac{20233}{156292}a+\frac{1}{4}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | $C_{2}$, which has order $2$ (assuming GRH) |
|
Unit group
| Rank: | $11$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{187149}{547022}a^{14}-\frac{5790489}{1094044}a^{12}+\frac{18674343}{547022}a^{10}-\frac{15979155}{156292}a^{8}+\frac{58747429}{547022}a^{6}-\frac{49859457}{1094044}a^{4}+\frac{34857147}{547022}a^{2}-\frac{4841551}{156292}$, $\frac{119591}{547022}a^{15}+\frac{3714453}{1094044}a^{13}-\frac{24073789}{1094044}a^{11}+\frac{18176948}{273511}a^{9}-\frac{39110317}{547022}a^{7}+\frac{33647521}{1094044}a^{5}-\frac{46270529}{1094044}a^{3}+\frac{6721017}{273511}a$, $\frac{93005}{273511}a^{14}-\frac{5718283}{1094044}a^{12}+\frac{18289827}{547022}a^{10}-\frac{15418971}{156292}a^{8}+\frac{27127801}{273511}a^{6}-\frac{45813767}{1094044}a^{4}+\frac{36085533}{547022}a^{2}-\frac{4748039}{156292}$, $\frac{129641}{273511}a^{14}-\frac{4006803}{547022}a^{12}+\frac{12902579}{273511}a^{10}-\frac{5504635}{39073}a^{8}+\frac{40130767}{273511}a^{6}-\frac{33963035}{547022}a^{4}+\frac{24663169}{273511}a^{2}-\frac{1624276}{39073}$, $\frac{42050}{273511}a^{15}+\frac{1308943}{547022}a^{13}-\frac{17023451}{1094044}a^{11}+\frac{51797917}{1094044}a^{9}-\frac{14356893}{273511}a^{7}+\frac{13965597}{547022}a^{5}-\frac{36009819}{1094044}a^{3}+\frac{17392509}{1094044}a$, $\frac{258835}{1094044}a^{15}-\frac{75829}{547022}a^{14}-\frac{1998547}{547022}a^{13}+\frac{2346961}{1094044}a^{12}+\frac{25731063}{1094044}a^{11}-\frac{7574587}{547022}a^{10}-\frac{38424145}{547022}a^{9}+\frac{6496015}{156292}a^{8}+\frac{80412095}{1094044}a^{7}-\frac{24175449}{547022}a^{6}-\frac{17828815}{547022}a^{5}+\frac{22071565}{1094044}a^{4}+\frac{49230487}{1094044}a^{3}-\frac{15136907}{547022}a^{2}-\frac{10925991}{547022}a+\frac{2055391}{156292}$, $\frac{6053}{156292}a^{15}+\frac{36867}{1094044}a^{14}-\frac{340359}{547022}a^{13}-\frac{135878}{273511}a^{12}+\frac{1145531}{273511}a^{11}+\frac{3306757}{1094044}a^{10}-\frac{14674959}{1094044}a^{9}-\frac{637937}{78146}a^{8}+\frac{2567089}{156292}a^{7}+\frac{6878547}{1094044}a^{6}-\frac{3405637}{547022}a^{5}-\frac{1037230}{273511}a^{4}+\frac{2242467}{273511}a^{3}+\frac{5499713}{1094044}a^{2}-\frac{5098167}{1094044}a-\frac{123535}{78146}$, $\frac{259729}{1094044}a^{15}-\frac{75829}{547022}a^{14}-\frac{1004128}{273511}a^{13}+\frac{2346961}{1094044}a^{12}+\frac{25879253}{1094044}a^{11}-\frac{7574587}{547022}a^{10}-\frac{38640745}{547022}a^{9}+\frac{6496015}{156292}a^{8}+\frac{80110973}{1094044}a^{7}-\frac{24175449}{547022}a^{6}-\frac{8067110}{273511}a^{5}+\frac{22071565}{1094044}a^{4}+\frac{49422189}{1094044}a^{3}-\frac{15136907}{547022}a^{2}-\frac{11813873}{547022}a+\frac{1899099}{156292}$, $\frac{1324957}{1094044}a^{15}-\frac{75829}{547022}a^{14}+\frac{2928191}{156292}a^{13}+\frac{2346961}{1094044}a^{12}-\frac{18891845}{156292}a^{11}-\frac{7574587}{547022}a^{10}+\frac{396437129}{1094044}a^{9}+\frac{6496015}{156292}a^{8}-\frac{418771737}{1094044}a^{7}-\frac{24175449}{547022}a^{6}+\frac{26196207}{156292}a^{5}+\frac{22071565}{1094044}a^{4}-\frac{35757361}{156292}a^{3}-\frac{15136907}{547022}a^{2}+\frac{122663701}{1094044}a+\frac{2211683}{156292}$, $\frac{337641}{547022}a^{15}+\frac{415775}{1094044}a^{14}-\frac{10438829}{1094044}a^{13}-\frac{6451789}{1094044}a^{12}+\frac{67288889}{1094044}a^{11}+\frac{10445655}{273511}a^{10}-\frac{14386353}{78146}a^{9}-\frac{4503423}{39073}a^{8}+\frac{105894055}{547022}a^{7}+\frac{135765603}{1094044}a^{6}-\frac{91996733}{1094044}a^{5}-\frac{60059921}{1094044}a^{4}+\frac{124526697}{1094044}a^{3}+\frac{19896626}{273511}a^{2}-\frac{4409143}{78146}a-\frac{1407191}{39073}$, $\frac{147914}{273511}a^{15}-\frac{34085}{1094044}a^{14}-\frac{9126283}{1094044}a^{13}+\frac{134364}{273511}a^{12}+\frac{58645815}{1094044}a^{11}-\frac{1773195}{547022}a^{10}-\frac{43615154}{273511}a^{9}+\frac{1577907}{156292}a^{8}+\frac{44909052}{273511}a^{7}-\frac{12948057}{1094044}a^{6}-\frac{75316623}{1094044}a^{5}+\frac{1548878}{273511}a^{4}+\frac{110166615}{1094044}a^{3}-\frac{3721367}{547022}a^{2}-\frac{12558087}{273511}a+\frac{543667}{156292}$
|
| |
| Regulator: | \( 2160919.829820927 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{8}\cdot(2\pi)^{4}\cdot 2160919.829820927 \cdot 1}{2\cdot\sqrt{484116351470433472610304}}\cr\approx \mathstrut & 0.619574053553027 \end{aligned}\] (assuming GRH)
Galois group
$C_2^5:C_4$ (as 16T273):
| A solvable group of order 128 |
| The 26 conjugacy class representatives for $C_2^5:C_4$ |
| Character table for $C_2^5:C_4$ |
Intermediate fields
| \(\Q(\sqrt{2}) \), 4.2.18432.3, 4.4.18432.1, 4.2.1024.1, 8.6.173946175488.3, 8.6.173946175488.2, 8.4.5435817984.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/padicField/5.8.0.1}{8} }^{2}$ | ${\href{/padicField/7.2.0.1}{2} }^{6}{,}\,{\href{/padicField/7.1.0.1}{1} }^{4}$ | ${\href{/padicField/11.4.0.1}{4} }^{4}$ | ${\href{/padicField/13.8.0.1}{8} }^{2}$ | ${\href{/padicField/17.4.0.1}{4} }^{4}$ | ${\href{/padicField/19.4.0.1}{4} }^{4}$ | ${\href{/padicField/23.4.0.1}{4} }^{2}{,}\,{\href{/padicField/23.2.0.1}{2} }^{4}$ | ${\href{/padicField/29.8.0.1}{8} }^{2}$ | ${\href{/padicField/31.4.0.1}{4} }^{2}{,}\,{\href{/padicField/31.2.0.1}{2} }^{4}$ | ${\href{/padicField/37.8.0.1}{8} }^{2}$ | ${\href{/padicField/41.2.0.1}{2} }^{4}{,}\,{\href{/padicField/41.1.0.1}{1} }^{8}$ | ${\href{/padicField/43.4.0.1}{4} }^{4}$ | ${\href{/padicField/47.2.0.1}{2} }^{8}$ | ${\href{/padicField/53.8.0.1}{8} }^{2}$ | ${\href{/padicField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.16.66h1.193 | $x^{16} + 16 x^{15} + 16 x^{13} + 4 x^{12} + 16 x^{11} + 8 x^{10} + 8 x^{6} + 16 x^{3} + 18$ | $16$ | $1$ | $66$ | 16T273 | $$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, 5]^{2}$$ |
|
\(3\)
| 3.4.2.4a1.2 | $x^{8} + 4 x^{7} + 4 x^{6} + 4 x^{4} + 8 x^{3} + 7$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $$[\ ]_{2}^{4}$$ |
| 3.4.2.4a1.2 | $x^{8} + 4 x^{7} + 4 x^{6} + 4 x^{4} + 8 x^{3} + 7$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $$[\ ]_{2}^{4}$$ |