Normalized defining polynomial
\( x^{16} - 16x^{14} + 100x^{12} - 400x^{10} + 1242x^{8} - 1712x^{6} + 1900x^{4} - 1136x^{2} + 529 \)
Invariants
Degree: | $16$ |
| |
Signature: | $[0, 8]$ |
| |
Discriminant: |
\(484116351470433472610304\)
\(\medspace = 2^{66}\cdot 3^{8}\)
|
| |
Root discriminant: | \(30.22\) |
| |
Galois root discriminant: | $2^{141/32}3^{1/2}\approx 36.72603516807517$ | ||
Ramified primes: |
\(2\), \(3\)
|
| |
Discriminant root field: | \(\Q\) | ||
$\Aut(K/\Q)$: | $C_2^2$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
Maximal CM subfield: | 4.0.18432.2 |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2}a^{8}-\frac{1}{2}$, $\frac{1}{4}a^{9}-\frac{1}{4}a^{8}-\frac{1}{2}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{4}a+\frac{1}{4}$, $\frac{1}{4}a^{10}-\frac{1}{4}a^{8}+\frac{1}{4}a^{2}-\frac{1}{4}$, $\frac{1}{4}a^{11}-\frac{1}{4}a^{8}-\frac{1}{2}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{4}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a+\frac{1}{4}$, $\frac{1}{28}a^{12}+\frac{1}{28}a^{10}+\frac{3}{14}a^{8}+\frac{1}{7}a^{6}-\frac{1}{4}a^{4}-\frac{1}{4}a^{2}+\frac{5}{14}$, $\frac{1}{28}a^{13}+\frac{1}{28}a^{11}-\frac{1}{28}a^{9}-\frac{1}{4}a^{8}-\frac{5}{14}a^{7}-\frac{1}{2}a^{6}+\frac{1}{4}a^{5}-\frac{1}{2}a^{4}+\frac{1}{4}a^{3}-\frac{1}{2}a^{2}-\frac{11}{28}a+\frac{1}{4}$, $\frac{1}{351311716}a^{14}+\frac{1003095}{175655858}a^{12}+\frac{661798}{87827929}a^{10}-\frac{2569653}{11332636}a^{8}-\frac{160451503}{351311716}a^{6}-\frac{1657341}{25093694}a^{4}-\frac{9855028}{87827929}a^{2}+\frac{56935629}{351311716}$, $\frac{1}{8080169468}a^{15}-\frac{24090599}{4040084734}a^{13}-\frac{135368125}{8080169468}a^{11}+\frac{134461}{18617902}a^{9}-\frac{61527661}{351311716}a^{7}-\frac{127125811}{577154962}a^{5}-\frac{829871473}{8080169468}a^{3}+\frac{1578003419}{4040084734}a$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Ideal class group: | $C_{2}$, which has order $2$ |
| |
Narrow class group: | $C_{2}$, which has order $2$ |
|
Unit group
Rank: | $7$ |
| |
Torsion generator: |
\( -1 \)
(order $2$)
|
| |
Fundamental units: |
$\frac{2223}{404737}a^{14}+\frac{36633}{404737}a^{12}-\frac{236573}{404737}a^{10}+\frac{1906213}{809474}a^{8}-\frac{2932191}{404737}a^{6}+\frac{4130692}{404737}a^{4}-\frac{3151001}{404737}a^{2}+\frac{2498009}{809474}$, $\frac{1992693}{351311716}a^{14}+\frac{7725638}{87827929}a^{12}-\frac{183380245}{351311716}a^{10}+\frac{11230019}{5666318}a^{8}-\frac{2070292897}{351311716}a^{6}+\frac{76925492}{12546847}a^{4}-\frac{1908907345}{351311716}a^{2}+\frac{49435971}{175655858}$, $\frac{4048515}{351311716}a^{14}-\frac{15227553}{87827929}a^{12}+\frac{344795371}{351311716}a^{10}-\frac{10173283}{2833159}a^{8}+\frac{3665736903}{351311716}a^{6}-\frac{102725024}{12546847}a^{4}+\frac{3342964883}{351311716}a^{2}-\frac{154431696}{87827929}$, $\frac{15112506}{2020042367}a^{15}+\frac{380927}{50187388}a^{14}-\frac{232380469}{2020042367}a^{13}-\frac{20153699}{175655858}a^{12}+\frac{5439861337}{8080169468}a^{11}+\frac{114316049}{175655858}a^{10}-\frac{93883045}{37235804}a^{9}-\frac{26841055}{11332636}a^{8}+\frac{651411694}{87827929}a^{7}+\frac{2404048529}{351311716}a^{6}-\frac{2035570123}{288577481}a^{5}-\frac{131470185}{25093694}a^{4}+\frac{52383795493}{8080169468}a^{3}+\frac{128945593}{25093694}a^{2}-\frac{12423913225}{8080169468}a-\frac{552477857}{351311716}$, $\frac{1172335}{577154962}a^{15}-\frac{438657}{351311716}a^{14}+\frac{255545421}{8080169468}a^{13}+\frac{3280875}{175655858}a^{12}-\frac{1511825345}{8080169468}a^{11}-\frac{36251835}{351311716}a^{10}+\frac{90669115}{130325314}a^{9}+\frac{2067879}{5666318}a^{8}-\frac{356217297}{175655858}a^{7}-\frac{370790549}{351311716}a^{6}+\frac{2341813603}{1154309924}a^{5}+\frac{14822163}{25093694}a^{4}-\frac{1917088259}{1154309924}a^{3}+\frac{81924277}{351311716}a^{2}+\frac{5170521129}{4040084734}a+\frac{76237845}{175655858}$, $\frac{16253131}{8080169468}a^{15}+\frac{2494479}{351311716}a^{14}+\frac{215867579}{8080169468}a^{13}-\frac{18284705}{175655858}a^{12}-\frac{978606851}{8080169468}a^{11}+\frac{197666961}{351311716}a^{10}+\frac{97422491}{260650628}a^{9}-\frac{5592213}{2833159}a^{8}-\frac{347655533}{351311716}a^{7}+\frac{1966234555}{351311716}a^{6}-\frac{1033391887}{1154309924}a^{5}-\frac{66421227}{25093694}a^{4}-\frac{11084779003}{8080169468}a^{3}+\frac{1352133261}{351311716}a^{2}-\frac{16637408919}{8080169468}a+\frac{95651154}{87827929}$, $\frac{133963735}{4040084734}a^{15}+\frac{2318073}{87827929}a^{14}+\frac{1051088586}{2020042367}a^{13}-\frac{75765289}{175655858}a^{12}-\frac{12640063419}{4040084734}a^{11}+\frac{484254933}{175655858}a^{10}+\frac{1548217443}{130325314}a^{9}-\frac{31268052}{2833159}a^{8}-\frac{879231949}{25093694}a^{7}+\frac{2970017375}{87827929}a^{6}+\frac{10595793407}{288577481}a^{5}-\frac{1163440437}{25093694}a^{4}-\frac{99089559837}{4040084734}a^{3}+\frac{6289897689}{175655858}a^{2}+\frac{2517135193}{577154962}a-\frac{1158562898}{87827929}$
|
| |
Regulator: | \( 183327.10379822497 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 183327.10379822497 \cdot 2}{2\cdot\sqrt{484116351470433472610304}}\cr\approx \mathstrut & 0.640015878234324 \end{aligned}\]
Galois group
$C_2^5:C_4$ (as 16T227):
A solvable group of order 128 |
The 26 conjugacy class representatives for $C_2^5:C_4$ |
Character table for $C_2^5:C_4$ |
Intermediate fields
\(\Q(\sqrt{2}) \), 4.2.2048.1, 4.0.18432.2, 4.2.9216.1, 8.0.2147483648.6, 8.4.173946175488.3, 8.0.5435817984.6 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | ${\href{/padicField/5.8.0.1}{8} }^{2}$ | ${\href{/padicField/7.4.0.1}{4} }^{2}{,}\,{\href{/padicField/7.2.0.1}{2} }^{4}$ | ${\href{/padicField/11.4.0.1}{4} }^{4}$ | ${\href{/padicField/13.8.0.1}{8} }^{2}$ | ${\href{/padicField/17.2.0.1}{2} }^{8}$ | ${\href{/padicField/19.4.0.1}{4} }^{4}$ | ${\href{/padicField/23.4.0.1}{4} }^{2}{,}\,{\href{/padicField/23.2.0.1}{2} }^{2}{,}\,{\href{/padicField/23.1.0.1}{1} }^{4}$ | ${\href{/padicField/29.8.0.1}{8} }^{2}$ | ${\href{/padicField/31.2.0.1}{2} }^{4}{,}\,{\href{/padicField/31.1.0.1}{1} }^{8}$ | ${\href{/padicField/37.8.0.1}{8} }^{2}$ | ${\href{/padicField/41.4.0.1}{4} }^{4}$ | ${\href{/padicField/43.4.0.1}{4} }^{4}$ | ${\href{/padicField/47.2.0.1}{2} }^{8}$ | ${\href{/padicField/53.8.0.1}{8} }^{2}$ | ${\href{/padicField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.1.16.66h1.541 | $x^{16} + 16 x^{13} + 4 x^{12} + 16 x^{11} + 8 x^{10} + 16 x^{9} + 8 x^{8} + 8 x^{6} + 16 x^{3} + 18$ | $16$ | $1$ | $66$ | 16T227 | $$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, 5]^{2}$$ |
\(3\)
| 3.2.2.2a1.1 | $x^{4} + 4 x^{3} + 8 x^{2} + 11 x + 4$ | $2$ | $2$ | $2$ | $C_4$ | $$[\ ]_{2}^{2}$$ |
3.2.2.2a1.1 | $x^{4} + 4 x^{3} + 8 x^{2} + 11 x + 4$ | $2$ | $2$ | $2$ | $C_4$ | $$[\ ]_{2}^{2}$$ | |
3.4.2.4a1.2 | $x^{8} + 4 x^{7} + 4 x^{6} + 4 x^{4} + 8 x^{3} + 7$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $$[\ ]_{2}^{4}$$ |