Normalized defining polynomial
\( x^{16} - 8x^{14} - 12x^{12} - 40x^{10} + 230x^{8} - 1336x^{6} - 1164x^{4} + 4456x^{2} + 2209 \)
Invariants
Degree: | $16$ |
| |
Signature: | $[4, 6]$ |
| |
Discriminant: |
\(1936465405881733890441216\)
\(\medspace = 2^{68}\cdot 3^{8}\)
|
| |
Root discriminant: | \(32.96\) |
| |
Galois root discriminant: | $2^{141/32}3^{1/2}\approx 36.72603516807517$ | ||
Ramified primes: |
\(2\), \(3\)
|
| |
Discriminant root field: | \(\Q\) | ||
$\Aut(K/\Q)$: | $C_2^2$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
This field has no CM subfields. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2}a^{4}-\frac{1}{2}$, $\frac{1}{2}a^{5}-\frac{1}{2}a$, $\frac{1}{2}a^{6}-\frac{1}{2}a^{2}$, $\frac{1}{4}a^{7}-\frac{1}{4}a^{6}-\frac{1}{4}a^{5}-\frac{1}{4}a^{4}+\frac{1}{4}a^{3}-\frac{1}{4}a^{2}-\frac{1}{4}a-\frac{1}{4}$, $\frac{1}{4}a^{8}-\frac{1}{4}$, $\frac{1}{4}a^{9}-\frac{1}{4}a$, $\frac{1}{8}a^{10}-\frac{1}{8}a^{8}-\frac{1}{4}a^{6}-\frac{1}{4}a^{4}-\frac{3}{8}a^{2}-\frac{1}{8}$, $\frac{1}{8}a^{11}-\frac{1}{8}a^{9}-\frac{1}{4}a^{6}-\frac{1}{4}a^{4}-\frac{1}{8}a^{3}-\frac{1}{4}a^{2}+\frac{1}{8}a-\frac{1}{4}$, $\frac{1}{8}a^{12}-\frac{1}{8}a^{8}-\frac{1}{8}a^{4}+\frac{1}{8}$, $\frac{1}{16}a^{13}-\frac{1}{16}a^{12}-\frac{1}{16}a^{9}+\frac{1}{16}a^{8}+\frac{3}{16}a^{5}-\frac{3}{16}a^{4}+\frac{5}{16}a-\frac{5}{16}$, $\frac{1}{117931213328}a^{14}-\frac{7052464921}{117931213328}a^{12}-\frac{1946836775}{117931213328}a^{10}-\frac{1365810953}{117931213328}a^{8}+\frac{12387465975}{117931213328}a^{6}+\frac{26609621089}{117931213328}a^{4}-\frac{5340597873}{117931213328}a^{2}+\frac{33203478929}{117931213328}$, $\frac{1}{5542767026416}a^{15}+\frac{7688936745}{5542767026416}a^{13}+\frac{71760171555}{5542767026416}a^{11}+\frac{116565402375}{5542767026416}a^{9}+\frac{690491942611}{5542767026416}a^{7}+\frac{807903909387}{5542767026416}a^{5}+\frac{1306644150401}{5542767026416}a^{3}+\frac{1654757662189}{5542767026416}a$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Ideal class group: | Trivial group, which has order $1$ |
| |
Narrow class group: | $C_{2}$, which has order $2$ |
|
Unit group
Rank: | $9$ |
| |
Torsion generator: |
\( -1 \)
(order $2$)
|
| |
Fundamental units: |
$\frac{1638163}{29482803332}a^{14}-\frac{2907601}{29482803332}a^{12}-\frac{28856361}{14741401666}a^{10}-\frac{506137191}{29482803332}a^{8}-\frac{798575023}{29482803332}a^{6}-\frac{2929007467}{29482803332}a^{4}-\frac{2959592727}{14741401666}a^{2}+\frac{4716773955}{29482803332}$, $\frac{3476268035}{5542767026416}a^{15}-\frac{31583547693}{5542767026416}a^{13}-\frac{9649758149}{5542767026416}a^{11}-\frac{113211702997}{5542767026416}a^{9}+\frac{967132976277}{5542767026416}a^{7}-\frac{5654082260067}{5542767026416}a^{5}+\frac{2010714549069}{5542767026416}a^{3}+\frac{16888673090981}{5542767026416}a+1$, $\frac{35473}{130454882}a^{14}-\frac{126306}{65227441}a^{12}-\frac{356928}{65227441}a^{10}-\frac{3211665}{260909764}a^{8}+\frac{8739071}{130454882}a^{6}-\frac{38500681}{130454882}a^{4}-\frac{61285662}{65227441}a^{2}+\frac{533337179}{260909764}$, $\frac{16270549}{58965606664}a^{14}-\frac{55610907}{29482803332}a^{12}-\frac{363763665}{58965606664}a^{10}-\frac{137536839}{14741401666}a^{8}+\frac{1303391899}{58965606664}a^{6}-\frac{8654354027}{29482803332}a^{4}-\frac{43725366999}{58965606664}a^{2}+\frac{4171019542}{7370700833}$, $\frac{622103673}{2771383513208}a^{15}+\frac{35473}{130454882}a^{14}-\frac{4766029449}{2771383513208}a^{13}-\frac{126306}{65227441}a^{12}-\frac{1805422801}{692845878302}a^{11}-\frac{356928}{65227441}a^{10}-\frac{9459518009}{692845878302}a^{9}-\frac{3211665}{260909764}a^{8}+\frac{80543431137}{2771383513208}a^{7}+\frac{8739071}{130454882}a^{6}-\frac{1032206377833}{2771383513208}a^{5}-\frac{38500681}{130454882}a^{4}-\frac{270323137241}{1385691756604}a^{3}-\frac{61285662}{65227441}a^{2}+\frac{847341934829}{1385691756604}a+\frac{11517651}{260909764}$, $\frac{622103673}{2771383513208}a^{15}-\frac{4766029449}{2771383513208}a^{13}-\frac{1805422801}{692845878302}a^{11}-\frac{9459518009}{692845878302}a^{9}+\frac{80543431137}{2771383513208}a^{7}-\frac{1032206377833}{2771383513208}a^{5}-\frac{270323137241}{1385691756604}a^{3}+\frac{847341934829}{1385691756604}a-1$, $\frac{2232060689}{5542767026416}a^{15}+\frac{22051488795}{5542767026416}a^{13}-\frac{4793624259}{5542767026416}a^{11}+\frac{37535558925}{5542767026416}a^{9}-\frac{806046114003}{5542767026416}a^{7}+\frac{3589669504401}{5542767026416}a^{5}-\frac{3092007098033}{5542767026416}a^{3}-\frac{19042072378081}{5542767026416}a$, $\frac{38985795}{117931213328}a^{14}-\frac{555371379}{117931213328}a^{12}+\frac{1642114745}{117931213328}a^{10}-\frac{502875693}{117931213328}a^{8}+\frac{20999488769}{117931213328}a^{6}-\frac{104742463881}{117931213328}a^{4}+\frac{324397394955}{117931213328}a^{2}+\frac{182230339521}{117931213328}$, $\frac{33764569325}{346422939151}a^{15}+\frac{15160429357}{117931213328}a^{14}-\frac{1690118824359}{2771383513208}a^{13}-\frac{94510187685}{117931213328}a^{12}-\frac{3081794781969}{1385691756604}a^{11}-\frac{347471339361}{117931213328}a^{10}-\frac{21623567653243}{2771383513208}a^{9}-\frac{1217572708459}{117931213328}a^{8}+\frac{3035665509885}{346422939151}a^{7}+\frac{1345379119687}{117931213328}a^{6}-\frac{319515717563133}{2771383513208}a^{5}-\frac{17880241862343}{117931213328}a^{4}-\frac{433855939747119}{1385691756604}a^{3}-\frac{48996078997499}{117931213328}a^{2}-\frac{326255415226185}{2771383513208}a-\frac{18853808281921}{117931213328}$
|
| |
Regulator: | \( 1028151.9507759992 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{6}\cdot 1028151.9507759992 \cdot 1}{2\cdot\sqrt{1936465405881733890441216}}\cr\approx \mathstrut & 0.363681851650982 \end{aligned}\]
Galois group
$C_2^5:C_4$ (as 16T259):
A solvable group of order 128 |
The 26 conjugacy class representatives for $C_2^5:C_4$ |
Character table for $C_2^5:C_4$ |
Intermediate fields
\(\Q(\sqrt{2}) \), \(\Q(\zeta_{16})^+\), 8.2.173946175488.7, 8.6.2147483648.1, 8.4.21743271936.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | ${\href{/padicField/5.8.0.1}{8} }^{2}$ | ${\href{/padicField/7.4.0.1}{4} }^{4}$ | ${\href{/padicField/11.4.0.1}{4} }^{4}$ | ${\href{/padicField/13.8.0.1}{8} }^{2}$ | ${\href{/padicField/17.2.0.1}{2} }^{6}{,}\,{\href{/padicField/17.1.0.1}{1} }^{4}$ | ${\href{/padicField/19.4.0.1}{4} }^{4}$ | ${\href{/padicField/23.4.0.1}{4} }^{4}$ | ${\href{/padicField/29.8.0.1}{8} }^{2}$ | ${\href{/padicField/31.2.0.1}{2} }^{8}$ | ${\href{/padicField/37.8.0.1}{8} }^{2}$ | ${\href{/padicField/41.4.0.1}{4} }^{4}$ | ${\href{/padicField/43.4.0.1}{4} }^{4}$ | ${\href{/padicField/47.2.0.1}{2} }^{6}{,}\,{\href{/padicField/47.1.0.1}{1} }^{4}$ | ${\href{/padicField/53.8.0.1}{8} }^{2}$ | ${\href{/padicField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.1.16.68h1.1718 | $x^{16} + 16 x^{15} + 8 x^{14} + 16 x^{13} + 8 x^{10} + 4 x^{8} + 16 x^{5} + 24 x^{4} + 16 x^{2} + 2$ | $16$ | $1$ | $68$ | 16T259 | $$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, 5]^{2}$$ |
\(3\)
| 3.4.2.4a1.2 | $x^{8} + 4 x^{7} + 4 x^{6} + 4 x^{4} + 8 x^{3} + 7$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $$[\ ]_{2}^{4}$$ |
3.4.2.4a1.2 | $x^{8} + 4 x^{7} + 4 x^{6} + 4 x^{4} + 8 x^{3} + 7$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $$[\ ]_{2}^{4}$$ |