Normalized defining polynomial
\( x^{16} + 8x^{12} - 16x^{10} + 66x^{8} - 64x^{6} + 48x^{4} - 16x^{2} + 4 \)
Invariants
| Degree: | $16$ |
| |
| Signature: | $[0, 8]$ |
| |
| Discriminant: |
\(30257271966902092038144\)
\(\medspace = 2^{62}\cdot 3^{8}\)
|
| |
| Root discriminant: | \(25.41\) |
| |
| Galois root discriminant: | $2^{141/32}3^{1/2}\approx 36.72603516807517$ | ||
| Ramified primes: |
\(2\), \(3\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_2^2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| Maximal CM subfield: | 8.0.339738624.2 | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2}a^{8}$, $\frac{1}{2}a^{9}$, $\frac{1}{2}a^{10}$, $\frac{1}{2}a^{11}$, $\frac{1}{2}a^{12}$, $\frac{1}{2}a^{13}$, $\frac{1}{6014}a^{14}-\frac{364}{3007}a^{12}+\frac{380}{3007}a^{10}-\frac{4}{3007}a^{8}-\frac{2}{97}a^{6}-\frac{1}{3007}a^{4}+\frac{752}{3007}a^{2}-\frac{190}{3007}$, $\frac{1}{6014}a^{15}-\frac{364}{3007}a^{13}+\frac{380}{3007}a^{11}-\frac{4}{3007}a^{9}-\frac{2}{97}a^{7}-\frac{1}{3007}a^{5}+\frac{752}{3007}a^{3}-\frac{190}{3007}a$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
| Rank: | $7$ |
| |
| Torsion generator: |
\( -\frac{256}{3007} a^{14} - \frac{66}{3007} a^{12} - \frac{2112}{3007} a^{10} + \frac{7103}{6014} a^{8} - \frac{528}{97} a^{6} + \frac{12540}{3007} a^{4} - \frac{12156}{3007} a^{2} + \frac{4063}{3007} \)
(order $6$)
|
| |
| Fundamental units: |
$\frac{703}{3007}a^{14}-\frac{594}{3007}a^{12}+\frac{5048}{3007}a^{10}-\frac{32297}{6014}a^{8}+\frac{1650}{97}a^{6}-\frac{76581}{3007}a^{4}+\frac{34932}{3007}a^{2}-\frac{11545}{3007}$, $\frac{1281}{3007}a^{14}-\frac{398}{3007}a^{12}+\frac{19633}{6014}a^{10}-\frac{47559}{6014}a^{8}+\frac{2830}{97}a^{6}-\frac{101793}{3007}a^{4}+\frac{62284}{3007}a^{2}-\frac{20695}{3007}$, $\frac{66}{3007}a^{14}-\frac{64}{3007}a^{12}-\frac{1089}{6014}a^{10}+\frac{528}{3007}a^{8}-\frac{124}{97}a^{6}+\frac{132}{3007}a^{4}-\frac{33}{3007}a^{2}-\frac{1983}{3007}$, $\frac{769}{3007}a^{15}+\frac{1375}{6014}a^{14}+\frac{530}{3007}a^{13}+\frac{331}{6014}a^{12}-\frac{11185}{6014}a^{11}+\frac{5296}{3007}a^{10}+\frac{33353}{6014}a^{9}-\frac{20021}{6014}a^{8}-\frac{1774}{97}a^{7}+\frac{1324}{97}a^{6}+\frac{76713}{3007}a^{5}-\frac{31445}{3007}a^{4}-\frac{37972}{3007}a^{3}+\frac{11620}{3007}a^{2}+\frac{12569}{3007}a-\frac{2648}{3007}$, $\frac{31}{194}a^{15}+\frac{289}{3007}a^{14}-\frac{32}{97}a^{13}+\frac{3203}{6014}a^{12}+\frac{183}{194}a^{11}+\frac{3136}{3007}a^{10}-\frac{512}{97}a^{9}+\frac{16425}{6014}a^{8}+\frac{1279}{97}a^{7}+\frac{8}{97}a^{6}-\frac{2650}{97}a^{5}+\frac{74597}{3007}a^{4}+\frac{808}{97}a^{3}-\frac{34436}{3007}a^{2}-\frac{264}{97}a+\frac{16474}{3007}$, $\frac{2844}{3007}a^{15}-\frac{3133}{3007}a^{14}-\frac{5789}{6014}a^{13}-\frac{1489}{3007}a^{12}-\frac{23463}{3007}a^{11}-\frac{50191}{6014}a^{10}+\frac{22752}{3007}a^{9}+\frac{77191}{6014}a^{8}-\frac{4726}{97}a^{7}-\frac{5898}{97}a^{6}+\frac{5688}{3007}a^{5}+\frac{105497}{3007}a^{4}-\frac{1422}{3007}a^{3}-\frac{63210}{3007}a^{2}-\frac{31870}{3007}a-\frac{3239}{3007}$, $\frac{20695}{6014}a^{15}-\frac{5933}{3007}a^{14}-\frac{2562}{3007}a^{13}-\frac{663}{6014}a^{12}-\frac{81984}{3007}a^{11}-\frac{46692}{3007}a^{10}+\frac{145927}{3007}a^{9}+\frac{92569}{3007}a^{8}-\frac{20496}{97}a^{7}-\frac{12255}{97}a^{6}+\frac{486780}{3007}a^{5}+\frac{348650}{3007}a^{4}-\frac{293094}{3007}a^{3}-\frac{214960}{3007}a^{2}+\frac{40992}{3007}a+\frac{50409}{3007}$
|
| |
| Regulator: | \( 142370.2827924048 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 142370.2827924048 \cdot 1}{6\cdot\sqrt{30257271966902092038144}}\cr\approx \mathstrut & 0.331353955809096 \end{aligned}\]
Galois group
$C_2^5:C_4$ (as 16T261):
| A solvable group of order 128 |
| The 26 conjugacy class representatives for $C_2^5:C_4$ |
| Character table for $C_2^5:C_4$ |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-6}) \), 4.0.18432.2, \(\Q(\zeta_{16})^+\), \(\Q(\sqrt{2}, \sqrt{-3})\), 8.6.173946175488.1, 8.2.2147483648.3, 8.0.339738624.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/padicField/5.8.0.1}{8} }^{2}$ | ${\href{/padicField/7.4.0.1}{4} }^{2}{,}\,{\href{/padicField/7.2.0.1}{2} }^{4}$ | ${\href{/padicField/11.4.0.1}{4} }^{4}$ | ${\href{/padicField/13.8.0.1}{8} }^{2}$ | ${\href{/padicField/17.2.0.1}{2} }^{8}$ | ${\href{/padicField/19.4.0.1}{4} }^{4}$ | ${\href{/padicField/23.4.0.1}{4} }^{2}{,}\,{\href{/padicField/23.2.0.1}{2} }^{4}$ | ${\href{/padicField/29.8.0.1}{8} }^{2}$ | ${\href{/padicField/31.2.0.1}{2} }^{2}{,}\,{\href{/padicField/31.1.0.1}{1} }^{12}$ | ${\href{/padicField/37.8.0.1}{8} }^{2}$ | ${\href{/padicField/41.4.0.1}{4} }^{4}$ | ${\href{/padicField/43.4.0.1}{4} }^{4}$ | ${\href{/padicField/47.2.0.1}{2} }^{8}$ | ${\href{/padicField/53.8.0.1}{8} }^{2}$ | ${\href{/padicField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.2.8.62a1.9381 | $x^{16} + 8 x^{15} + 36 x^{14} + 112 x^{13} + 274 x^{12} + 552 x^{11} + 952 x^{10} + 1416 x^{9} + 1831 x^{8} + 2040 x^{7} + 1952 x^{6} + 1576 x^{5} + 1062 x^{4} + 576 x^{3} + 260 x^{2} + 88 x + 31$ | $8$ | $2$ | $62$ | 16T261 | $$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, 5]^{2}$$ |
|
\(3\)
| 3.4.2.4a1.2 | $x^{8} + 4 x^{7} + 4 x^{6} + 4 x^{4} + 8 x^{3} + 7$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $$[\ ]_{2}^{4}$$ |
| 3.4.2.4a1.2 | $x^{8} + 4 x^{7} + 4 x^{6} + 4 x^{4} + 8 x^{3} + 7$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $$[\ ]_{2}^{4}$$ |