Normalized defining polynomial
\( x^{16} + 4x^{12} + 16x^{10} + 14x^{8} + 32x^{6} + 72x^{4} - 16x^{2} + 4 \)
Invariants
Degree: | $16$ |
| |
Signature: | $[0, 8]$ |
| |
Discriminant: |
\(30257271966902092038144\)
\(\medspace = 2^{62}\cdot 3^{8}\)
|
| |
Root discriminant: | \(25.41\) |
| |
Galois root discriminant: | $2^{141/32}3^{1/2}\approx 36.72603516807517$ | ||
Ramified primes: |
\(2\), \(3\)
|
| |
Discriminant root field: | \(\Q\) | ||
$\Aut(K/\Q)$: | $C_2^2$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
Maximal CM subfield: | \(\Q(\sqrt{2}, \sqrt{-3})\) |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2}a^{8}$, $\frac{1}{2}a^{9}$, $\frac{1}{2}a^{10}$, $\frac{1}{2}a^{11}$, $\frac{1}{18}a^{12}+\frac{2}{9}a^{10}+\frac{2}{9}a^{8}+\frac{2}{9}a^{6}+\frac{1}{9}a^{4}-\frac{1}{3}a^{2}-\frac{1}{9}$, $\frac{1}{18}a^{13}+\frac{2}{9}a^{11}+\frac{2}{9}a^{9}+\frac{2}{9}a^{7}+\frac{1}{9}a^{5}-\frac{1}{3}a^{3}-\frac{1}{9}a$, $\frac{1}{10098}a^{14}+\frac{79}{5049}a^{12}-\frac{419}{5049}a^{10}+\frac{1691}{10098}a^{8}+\frac{400}{1683}a^{6}+\frac{1681}{5049}a^{4}-\frac{2524}{5049}a^{2}+\frac{1754}{5049}$, $\frac{1}{10098}a^{15}+\frac{79}{5049}a^{13}-\frac{419}{5049}a^{11}+\frac{1691}{10098}a^{9}+\frac{400}{1683}a^{7}+\frac{1681}{5049}a^{5}-\frac{2524}{5049}a^{3}+\frac{1754}{5049}a$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Ideal class group: | Trivial group, which has order $1$ |
| |
Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
Rank: | $7$ |
| |
Torsion generator: |
\( -\frac{32}{561} a^{14} - \frac{7}{561} a^{12} - \frac{112}{561} a^{10} - \frac{1073}{1122} a^{8} - \frac{168}{187} a^{6} - \frac{994}{561} a^{4} - \frac{2276}{561} a^{2} + \frac{505}{561} \)
(order $6$)
|
| |
Fundamental units: |
$\frac{617}{5049}a^{14}+\frac{305}{10098}a^{12}+\frac{2440}{5049}a^{10}+\frac{20531}{10098}a^{8}+\frac{1220}{561}a^{6}+\frac{21655}{5049}a^{4}+\frac{49424}{5049}a^{2}+\frac{1220}{5049}$, $\frac{622}{5049}a^{14}+\frac{101}{5049}a^{12}+\frac{4915}{10098}a^{10}+\frac{20611}{10098}a^{8}+\frac{3172}{1683}a^{6}+\frac{21635}{5049}a^{4}+\frac{44380}{5049}a^{2}-\frac{9851}{5049}$, $\frac{230}{1683}a^{15}+\frac{109}{5049}a^{14}-\frac{7}{374}a^{13}-\frac{169}{5049}a^{12}+\frac{599}{1122}a^{11}+\frac{662}{5049}a^{10}+\frac{2411}{1122}a^{9}+\frac{2305}{10098}a^{8}+\frac{2594}{1683}a^{7}+\frac{58}{1683}a^{6}+\frac{7121}{1683}a^{5}+\frac{3491}{5049}a^{4}+\frac{14816}{1683}a^{3}+\frac{3475}{5049}a^{2}-\frac{5675}{1683}a-\frac{6962}{5049}$, $\frac{61}{561}a^{15}+\frac{334}{5049}a^{14}+\frac{116}{1683}a^{13}+\frac{38}{5049}a^{12}+\frac{734}{1683}a^{11}+\frac{2899}{10098}a^{10}+\frac{6481}{3366}a^{9}+\frac{5477}{5049}a^{8}+\frac{4238}{1683}a^{7}+\frac{1660}{1683}a^{6}+\frac{7309}{1683}a^{5}+\frac{12689}{5049}a^{4}+\frac{1641}{187}a^{3}+\frac{28945}{5049}a^{2}+\frac{2798}{1683}a-\frac{257}{5049}$, $\frac{235}{1122}a^{15}+\frac{113}{1122}a^{14}+\frac{125}{3366}a^{13}-\frac{107}{3366}a^{12}+\frac{2561}{3366}a^{11}+\frac{1093}{3366}a^{10}+\frac{5812}{1683}a^{9}+\frac{5143}{3366}a^{8}+\frac{5809}{1683}a^{7}+\frac{1571}{1683}a^{6}+\frac{10184}{1683}a^{5}+\frac{2875}{1683}a^{4}+\frac{2813}{187}a^{3}+\frac{1172}{187}a^{2}-\frac{248}{1683}a-\frac{1363}{1683}$, $\frac{589}{3366}a^{15}-\frac{43}{918}a^{14}-\frac{32}{1683}a^{13}-\frac{11}{918}a^{12}+\frac{1171}{1683}a^{11}-\frac{88}{459}a^{10}+\frac{4600}{1683}a^{9}-\frac{599}{918}a^{8}+\frac{1289}{561}a^{7}-\frac{44}{51}a^{6}+\frac{8359}{1683}a^{5}-\frac{781}{459}a^{4}+\frac{21332}{1683}a^{3}-\frac{863}{459}a^{2}-\frac{4744}{1683}a-\frac{44}{459}$, $\frac{205}{1122}a^{15}-\frac{1625}{10098}a^{14}+\frac{152}{1683}a^{13}-\frac{373}{10098}a^{12}+\frac{1310}{1683}a^{11}-\frac{2984}{5049}a^{10}+\frac{5639}{1683}a^{9}-\frac{25903}{10098}a^{8}+\frac{7391}{1683}a^{7}-\frac{1492}{561}a^{6}+\frac{12982}{1683}a^{5}-\frac{26483}{5049}a^{4}+\frac{9172}{561}a^{3}-\frac{65608}{5049}a^{2}+\frac{7574}{1683}a-\frac{1492}{5049}$
|
| |
Regulator: | \( 265388.5426882234 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 265388.5426882234 \cdot 1}{6\cdot\sqrt{30257271966902092038144}}\cr\approx \mathstrut & 0.617667828716608 \end{aligned}\]
Galois group
$C_2^5:C_4$ (as 16T283):
A solvable group of order 128 |
The 26 conjugacy class representatives for $C_2^5:C_4$ |
Character table for $C_2^5:C_4$ |
Intermediate fields
\(\Q(\sqrt{2}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-6}) \), 4.2.2048.1, 4.2.18432.3, \(\Q(\sqrt{2}, \sqrt{-3})\), 8.4.173946175488.3, 8.0.2147483648.6, 8.0.339738624.5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | ${\href{/padicField/5.8.0.1}{8} }^{2}$ | ${\href{/padicField/7.4.0.1}{4} }^{2}{,}\,{\href{/padicField/7.2.0.1}{2} }^{2}{,}\,{\href{/padicField/7.1.0.1}{1} }^{4}$ | ${\href{/padicField/11.4.0.1}{4} }^{2}{,}\,{\href{/padicField/11.2.0.1}{2} }^{4}$ | ${\href{/padicField/13.8.0.1}{8} }^{2}$ | ${\href{/padicField/17.2.0.1}{2} }^{8}$ | ${\href{/padicField/19.4.0.1}{4} }^{2}{,}\,{\href{/padicField/19.2.0.1}{2} }^{4}$ | ${\href{/padicField/23.4.0.1}{4} }^{2}{,}\,{\href{/padicField/23.2.0.1}{2} }^{4}$ | ${\href{/padicField/29.8.0.1}{8} }^{2}$ | ${\href{/padicField/31.2.0.1}{2} }^{4}{,}\,{\href{/padicField/31.1.0.1}{1} }^{8}$ | ${\href{/padicField/37.8.0.1}{8} }^{2}$ | ${\href{/padicField/41.4.0.1}{4} }^{4}$ | ${\href{/padicField/43.4.0.1}{4} }^{2}{,}\,{\href{/padicField/43.2.0.1}{2} }^{4}$ | ${\href{/padicField/47.2.0.1}{2} }^{8}$ | ${\href{/padicField/53.8.0.1}{8} }^{2}$ | ${\href{/padicField/59.4.0.1}{4} }^{2}{,}\,{\href{/padicField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.2.8.62a1.10319 | $x^{16} + 8 x^{15} + 36 x^{14} + 112 x^{13} + 266 x^{12} + 520 x^{11} + 864 x^{10} + 1256 x^{9} + 1591 x^{8} + 1752 x^{7} + 1656 x^{6} + 1336 x^{5} + 926 x^{4} + 544 x^{3} + 276 x^{2} + 104 x + 31$ | $8$ | $2$ | $62$ | 16T283 | $$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, 5]^{2}$$ |
\(3\)
| 3.2.2.2a1.2 | $x^{4} + 4 x^{3} + 8 x^{2} + 8 x + 7$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ |
3.2.2.2a1.2 | $x^{4} + 4 x^{3} + 8 x^{2} + 8 x + 7$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
3.4.2.4a1.2 | $x^{8} + 4 x^{7} + 4 x^{6} + 4 x^{4} + 8 x^{3} + 7$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $$[\ ]_{2}^{4}$$ |