-
nf_fields • Show schema
Hide schema
{'class_group': [], 'class_number': 1, 'cm': False, 'coeffs': [4, 0, -16, 0, 72, 0, 32, 0, 14, 0, 16, 0, 4, 0, 0, 0, 1], 'conductor': 0, 'degree': 16, 'dirichlet_group': [], 'disc_abs': 30257271966902092038144, 'disc_rad': 6, 'disc_sign': 1, 'frobs': [[2, [0]], [3, [0]], [5, [[8, 2]]], [7, [[4, 2], [2, 2], [1, 4]]], [11, [[4, 2], [2, 4]]], [13, [[8, 2]]], [17, [[2, 8]]], [19, [[4, 2], [2, 4]]], [23, [[4, 2], [2, 4]]], [29, [[8, 2]]], [31, [[2, 4], [1, 8]]], [37, [[8, 2]]], [41, [[4, 4]]], [43, [[4, 2], [2, 4]]], [47, [[2, 8]]], [53, [[8, 2]]], [59, [[4, 2], [2, 4]]]], 'gal_is_abelian': False, 'gal_is_cyclic': False, 'gal_is_solvable': True, 'galois_disc_exponents': [564, 64], 'galois_label': '16T283', 'galt': 283, 'grd': 36.72603516807517, 'index': 1, 'inessentialp': [], 'is_galois': False, 'is_minimal_sibling': False, 'iso_number': 22, 'label': '16.0.30257271966902092038144.22', 'local_algs': ['2.2.8.62a1.10319', '3.2.2.2a1.2', '3.2.2.2a1.2', '3.4.2.4a1.2'], 'maximal_cm_subfield': [4, 0, 2, 0, 1], 'minimal_sibling': [49, 0, -272, 0, 292, 0, -368, 0, 462, 0, -304, 0, 100, 0, -16, 0, 1], 'monogenic': 0, 'narrow_class_group': [], 'narrow_class_number': 1, 'num_ram': 2, 'r2': 8, 'ramps': [2, 3], 'rd': 25.412761497225222, 'regulator': {'__RealLiteral__': 0, 'data': '265388.5426882234', 'prec': 57}, 'res': {'sib': ['-113,-464,3528,-6832,7076,-6944,5536,-3360,2134,-960,408,-176,20,-16,0,0,1', '-2,64,-240,-256,128,208,1168,2112,712,-1056,-696,208,200,-16,-24,0,1', '-401,-2640,-6216,-5296,2604,8992,6848,672,-2458,-1664,-104,336,124,-16,-16,0,1', '1,0,-200,0,6204,0,-6904,0,2918,0,-568,0,60,0,-8,0,1', '1,0,-24,0,428,0,-2960,0,14510,0,-30040,0,41136,0,-41912,0,32979,0,-19240,0,8272,0,-2344,0,430,0,-48,0,20,0,-8,0,1', '1,0,-32,0,996,0,-832,0,-282,0,1792,0,-176,0,-960,0,2099,0,-800,0,560,0,-32,0,102,0,0,0,12,0,0,0,1', '1,0,-40,0,236,0,-256,0,-44,0,112,0,-4,0,-8,0,1', '1,0,-432,0,1100,0,-1264,0,894,0,-400,0,108,0,-16,0,1', '1,0,-8,0,40,0,-128,0,288,0,-288,0,48,0,312,0,-449,0,312,0,48,0,-288,0,288,0,-128,0,40,0,-8,0,1', '1,0,-8,0,68,0,16,0,106,0,-440,0,16,0,-120,0,723,0,-120,0,16,0,-440,0,106,0,16,0,68,0,-8,0,1', '1,0,0,0,-1040,0,0,0,46708,0,0,0,-15280,0,0,0,-3162,0,0,0,-7088,0,0,0,-140,0,0,0,-16,0,0,0,1', '1,0,0,0,-12,0,96,0,72,0,-632,0,1496,0,-2120,0,2159,0,-1440,0,760,0,-464,0,264,0,-112,0,36,0,-8,0,1', '1,0,0,0,-4,0,0,0,18,0,0,0,16,0,0,0,-13,0,0,0,16,0,0,0,18,0,0,0,-4,0,0,0,1', '1,0,0,0,1040,0,0,0,46708,0,0,0,15280,0,0,0,-3162,0,0,0,7088,0,0,0,-140,0,0,0,16,0,0,0,1', '1,0,0,0,184424,0,0,0,119692,0,0,0,-23720,0,0,0,11814,0,0,0,5144,0,0,0,652,0,0,0,40,0,0,0,1', '1,0,0,0,4,0,0,0,18,0,0,0,-16,0,0,0,-13,0,0,0,-16,0,0,0,18,0,0,0,4,0,0,0,1', '1,0,200,0,6204,0,6904,0,2918,0,568,0,60,0,8,0,1', '1,0,24,0,428,0,2960,0,14510,0,30040,0,41136,0,41912,0,32979,0,19240,0,8272,0,2344,0,430,0,48,0,20,0,8,0,1', '1,0,32,0,996,0,832,0,-282,0,-1792,0,-176,0,960,0,2099,0,800,0,560,0,32,0,102,0,0,0,12,0,0,0,1', '1,0,40,0,236,0,256,0,-44,0,-112,0,-4,0,8,0,1', '1,0,432,0,1100,0,1264,0,894,0,400,0,108,0,16,0,1', '1,0,8,0,44,0,144,0,330,0,56,0,48,0,520,0,-429,0,-520,0,48,0,-56,0,330,0,-144,0,44,0,-8,0,1', '1,0,8,0,68,0,-16,0,106,0,440,0,16,0,120,0,723,0,120,0,16,0,440,0,106,0,-16,0,68,0,8,0,1', '132,-384,640,-3392,10368,-18368,19488,1792,-32320,45632,-17920,-31616,10384,-7776,-11200,13824,47180,36288,14720,8608,9696,32,-592,640,1184,-32,-64,0,88,-16,0,0,1', '2122849,0,-8601472,0,17854736,0,-22079840,0,16886628,0,-8876592,0,4166224,0,-2066352,0,890082,0,-301664,0,94864,0,-28800,0,6748,0,-1104,0,144,0,-16,0,1', '2122849,0,8601472,0,17854736,0,22079840,0,16886628,0,8876592,0,4166224,0,2066352,0,890082,0,301664,0,94864,0,28800,0,6748,0,1104,0,144,0,16,0,1', '2209,0,-33600,0,125456,0,-176288,0,97172,0,-138304,0,489840,0,-850016,0,864774,0,-584896,0,278320,0,-95200,0,23380,0,-4032,0,464,0,-32,0,1', '2209,0,-4456,0,-1164,0,1336,0,230,0,40,0,-12,0,8,0,1', '2209,0,33600,0,125456,0,176288,0,97172,0,138304,0,489840,0,850016,0,864774,0,584896,0,278320,0,95200,0,23380,0,4032,0,464,0,32,0,1', '2209,0,4456,0,-1164,0,-1336,0,230,0,-40,0,-12,0,-8,0,1', '2401,0,0,0,45368,0,0,0,-69652,0,0,0,21192,0,0,0,39494,0,0,0,11208,0,0,0,1196,0,0,0,56,0,0,0,1', '24964,0,-135680,0,231424,0,-4064,0,-228480,0,-347552,0,711504,0,-146432,0,-171452,0,38464,0,14592,0,-688,0,464,0,-16,0,-56,0,0,0,1', '24964,0,135680,0,231424,0,4064,0,-228480,0,347552,0,711504,0,146432,0,-171452,0,-38464,0,14592,0,688,0,464,0,16,0,-56,0,0,0,1', '264196,0,-1569312,0,4214256,0,-6558496,0,5883880,0,-3387616,0,2388992,0,-1326496,0,970568,0,-498064,0,219880,0,-72880,0,18492,0,-3488,0,440,0,-32,0,1', '264196,0,1312416,0,3190512,0,1354400,0,-507416,0,-778528,0,701696,0,-952672,0,858440,0,-465328,0,200296,0,-70288,0,18492,0,-3488,0,440,0,-32,0,1', '2686,-5376,8688,-6208,6096,-2096,3008,-768,1328,-224,328,-48,64,-16,8,0,1', '31,2528,-6456,-14448,56088,-28816,-3600,85568,-46104,56736,-261688,80352,-33616,-154240,29072,212800,117234,-16592,-96088,-60752,18736,25088,7696,-2464,-4568,-1008,536,256,56,-16,-16,0,1', '34,-128,7888,70752,298608,799424,1511712,2086368,2079664,1450976,758832,644960,1039016,1199152,698752,-22464,-301384,-117152,109888,139824,54496,-10512,-19328,-6400,772,1456,600,32,-48,-32,0,0,1', '380617,-3527408,13925248,-31159008,45586392,-49261840,43012896,-30606720,18189348,-10488944,4761184,173888,-1555816,958000,-885824,758912,-341910,106512,-31808,11104,1240,-12560,7136,-1024,1260,-1072,160,0,56,-16,0,0,1', '4,0,-16,0,48,0,-64,0,66,0,-16,0,8,0,0,0,1', '4,0,-352,0,8528,0,-42240,0,86680,0,-110048,0,134896,0,-112064,0,21504,0,944,0,14040,0,-6944,0,380,0,128,0,-16,0,0,0,1', '4,0,-480,0,272,0,-1408,0,-12072,0,1632,0,17648,0,-7872,0,-3264,0,-2640,0,2744,0,-1248,0,924,0,160,0,-112,0,0,0,1', '4,0,16,0,48,0,64,0,66,0,16,0,8,0,0,0,1', '4,0,16,0,72,0,-32,0,14,0,-16,0,4,0,0,0,1', '4,0,352,0,8528,0,42240,0,86680,0,110048,0,134896,0,112064,0,21504,0,-944,0,14040,0,6944,0,380,0,-128,0,-16,0,0,0,1', '4,0,480,0,272,0,1408,0,-12072,0,-1632,0,17648,0,7872,0,-3264,0,2640,0,2744,0,1248,0,924,0,-160,0,-112,0,0,0,1', '49,0,-272,0,292,0,-368,0,462,0,-304,0,100,0,-16,0,1', '49,0,272,0,292,0,368,0,462,0,304,0,100,0,16,0,1', '529,0,-1136,0,1900,0,-1712,0,1242,0,-400,0,100,0,-16,0,1', '529,0,1136,0,1900,0,1712,0,1242,0,400,0,100,0,16,0,1', '73441,0,1022384,0,864392,0,2743904,0,3530308,0,3650384,0,3709336,0,3057312,0,1995618,0,1011888,0,380872,0,106208,0,22684,0,3728,0,440,0,32,0,1', '799,14080,98104,405360,1138808,2273744,3174352,2778240,412024,-3190656,-6027784,-6379328,-4129088,-979648,1202672,1674560,1011250,221008,-157224,-153904,-36336,24160,20592,2720,-3656,-1968,-88,288,104,-16,-16,0,1', '81,0,-432,0,648,0,-336,0,148,0,-88,0,32,0,-8,0,1', '81,0,432,0,648,0,336,0,148,0,88,0,32,0,8,0,1', '8836,0,-26752,0,-66112,0,340928,0,-217088,0,-874336,0,1438336,0,90912,0,-1343556,0,816192,0,-184736,0,5408,0,4864,0,-976,0,128,0,-16,0,1', '8836,0,-69760,0,-97280,0,-78752,0,364912,0,269696,0,-492880,0,-187040,0,342476,0,-31104,0,-53920,0,9744,0,1752,0,-320,0,72,0,-16,0,1', '8836,0,69760,0,-97280,0,78752,0,364912,0,-269696,0,-492880,0,187040,0,342476,0,31104,0,-53920,0,-9744,0,1752,0,320,0,72,0,16,0,1', '8959,19456,64328,44304,17592,-148048,-145040,93504,359240,153664,-136472,-297696,-93424,232640,182928,-9152,-75022,-37936,27112,30000,-464,-3136,4560,4192,1928,624,56,64,56,-16,-16,0,1', '961,0,-1232,0,-3492,0,-2512,0,-694,0,80,0,84,0,16,0,1', '961,0,1232,0,-3492,0,2512,0,-694,0,-80,0,84,0,-16,0,1']}, 'subfield_mults': [1, 1, 1, 1, 1, 1, 1, 1, 1], 'subfields': ['-2.0.1', '1.-1.1', '6.0.1', '-2.0.0.0.1', '-18.0.0.0.1', '4.0.2.0.1', '162.0.-216.0.-36.0.0.0.1', '2.0.8.0.-4.0.0.0.1', '4.0.0.0.2.0.0.0.1'], 'torsion_gen': '\\( -\\frac{32}{561} a^{14} - \\frac{7}{561} a^{12} - \\frac{112}{561} a^{10} - \\frac{1073}{1122} a^{8} - \\frac{168}{187} a^{6} - \\frac{994}{561} a^{4} - \\frac{2276}{561} a^{2} + \\frac{505}{561} \\)', 'torsion_order': 6, 'units': ['\\( \\frac{617}{5049} a^{14} + \\frac{305}{10098} a^{12} + \\frac{2440}{5049} a^{10} + \\frac{20531}{10098} a^{8} + \\frac{1220}{561} a^{6} + \\frac{21655}{5049} a^{4} + \\frac{49424}{5049} a^{2} + \\frac{1220}{5049} \\)', '\\( \\frac{622}{5049} a^{14} + \\frac{101}{5049} a^{12} + \\frac{4915}{10098} a^{10} + \\frac{20611}{10098} a^{8} + \\frac{3172}{1683} a^{6} + \\frac{21635}{5049} a^{4} + \\frac{44380}{5049} a^{2} - \\frac{9851}{5049} \\)', '\\( \\frac{230}{1683} a^{15} + \\frac{109}{5049} a^{14} - \\frac{7}{374} a^{13} - \\frac{169}{5049} a^{12} + \\frac{599}{1122} a^{11} + \\frac{662}{5049} a^{10} + \\frac{2411}{1122} a^{9} + \\frac{2305}{10098} a^{8} + \\frac{2594}{1683} a^{7} + \\frac{58}{1683} a^{6} + \\frac{7121}{1683} a^{5} + \\frac{3491}{5049} a^{4} + \\frac{14816}{1683} a^{3} + \\frac{3475}{5049} a^{2} - \\frac{5675}{1683} a - \\frac{6962}{5049} \\)', '\\( \\frac{61}{561} a^{15} + \\frac{334}{5049} a^{14} + \\frac{116}{1683} a^{13} + \\frac{38}{5049} a^{12} + \\frac{734}{1683} a^{11} + \\frac{2899}{10098} a^{10} + \\frac{6481}{3366} a^{9} + \\frac{5477}{5049} a^{8} + \\frac{4238}{1683} a^{7} + \\frac{1660}{1683} a^{6} + \\frac{7309}{1683} a^{5} + \\frac{12689}{5049} a^{4} + \\frac{1641}{187} a^{3} + \\frac{28945}{5049} a^{2} + \\frac{2798}{1683} a - \\frac{257}{5049} \\)', '\\( \\frac{235}{1122} a^{15} + \\frac{113}{1122} a^{14} + \\frac{125}{3366} a^{13} - \\frac{107}{3366} a^{12} + \\frac{2561}{3366} a^{11} + \\frac{1093}{3366} a^{10} + \\frac{5812}{1683} a^{9} + \\frac{5143}{3366} a^{8} + \\frac{5809}{1683} a^{7} + \\frac{1571}{1683} a^{6} + \\frac{10184}{1683} a^{5} + \\frac{2875}{1683} a^{4} + \\frac{2813}{187} a^{3} + \\frac{1172}{187} a^{2} - \\frac{248}{1683} a - \\frac{1363}{1683} \\)', '\\( \\frac{589}{3366} a^{15} - \\frac{43}{918} a^{14} - \\frac{32}{1683} a^{13} - \\frac{11}{918} a^{12} + \\frac{1171}{1683} a^{11} - \\frac{88}{459} a^{10} + \\frac{4600}{1683} a^{9} - \\frac{599}{918} a^{8} + \\frac{1289}{561} a^{7} - \\frac{44}{51} a^{6} + \\frac{8359}{1683} a^{5} - \\frac{781}{459} a^{4} + \\frac{21332}{1683} a^{3} - \\frac{863}{459} a^{2} - \\frac{4744}{1683} a - \\frac{44}{459} \\)', '\\( \\frac{205}{1122} a^{15} - \\frac{1625}{10098} a^{14} + \\frac{152}{1683} a^{13} - \\frac{373}{10098} a^{12} + \\frac{1310}{1683} a^{11} - \\frac{2984}{5049} a^{10} + \\frac{5639}{1683} a^{9} - \\frac{25903}{10098} a^{8} + \\frac{7391}{1683} a^{7} - \\frac{1492}{561} a^{6} + \\frac{12982}{1683} a^{5} - \\frac{26483}{5049} a^{4} + \\frac{9172}{561} a^{3} - \\frac{65608}{5049} a^{2} + \\frac{7574}{1683} a - \\frac{1492}{5049} \\)'], 'used_grh': False, 'zk': ['1', 'a', 'a^2', 'a^3', 'a^4', 'a^5', 'a^6', 'a^7', '1/2*a^8', '1/2*a^9', '1/2*a^10', '1/2*a^11', '1/18*a^12 + 2/9*a^10 + 2/9*a^8 + 2/9*a^6 + 1/9*a^4 - 1/3*a^2 - 1/9', '1/18*a^13 + 2/9*a^11 + 2/9*a^9 + 2/9*a^7 + 1/9*a^5 - 1/3*a^3 - 1/9*a', '1/10098*a^14 + 79/5049*a^12 - 419/5049*a^10 + 1691/10098*a^8 + 400/1683*a^6 + 1681/5049*a^4 - 2524/5049*a^2 + 1754/5049', '1/10098*a^15 + 79/5049*a^13 - 419/5049*a^11 + 1691/10098*a^9 + 400/1683*a^7 + 1681/5049*a^5 - 2524/5049*a^3 + 1754/5049*a']}