Normalized defining polynomial
\( x^{16} + 16x^{14} + 92x^{12} + 208x^{10} + 150x^{8} + 432x^{6} + 1788x^{4} + 1648x^{2} + 49 \)
Invariants
Degree: | $16$ |
| |
Signature: | $[0, 8]$ |
| |
Discriminant: |
\(121029087867608368152576\)
\(\medspace = 2^{64}\cdot 3^{8}\)
|
| |
Root discriminant: | \(27.71\) |
| |
Galois root discriminant: | $2^{137/32}3^{1/2}\approx 33.677922740001875$ | ||
Ramified primes: |
\(2\), \(3\)
|
| |
Discriminant root field: | \(\Q\) | ||
$\Aut(K/\Q)$: | $C_2^2$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
This field has no CM subfields. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2}a^{4}-\frac{1}{2}$, $\frac{1}{2}a^{5}-\frac{1}{2}a$, $\frac{1}{2}a^{6}-\frac{1}{2}a^{2}$, $\frac{1}{4}a^{7}-\frac{1}{4}a^{6}-\frac{1}{4}a^{5}-\frac{1}{4}a^{4}-\frac{1}{4}a^{3}+\frac{1}{4}a^{2}+\frac{1}{4}a+\frac{1}{4}$, $\frac{1}{4}a^{8}-\frac{1}{4}$, $\frac{1}{4}a^{9}-\frac{1}{4}a$, $\frac{1}{8}a^{10}-\frac{1}{8}a^{8}-\frac{1}{4}a^{6}-\frac{1}{4}a^{4}+\frac{1}{8}a^{2}+\frac{3}{8}$, $\frac{1}{8}a^{11}-\frac{1}{8}a^{9}-\frac{1}{4}a^{6}-\frac{1}{4}a^{4}-\frac{1}{8}a^{3}+\frac{1}{4}a^{2}+\frac{1}{8}a+\frac{1}{4}$, $\frac{1}{1096}a^{12}+\frac{3}{274}a^{10}-\frac{83}{1096}a^{8}+\frac{14}{137}a^{6}-\frac{169}{1096}a^{4}+\frac{9}{274}a^{2}+\frac{91}{1096}$, $\frac{1}{2192}a^{13}-\frac{1}{2192}a^{12}+\frac{3}{548}a^{11}-\frac{3}{548}a^{10}-\frac{83}{2192}a^{9}+\frac{83}{2192}a^{8}+\frac{7}{137}a^{7}-\frac{7}{137}a^{6}+\frac{379}{2192}a^{5}-\frac{379}{2192}a^{4}+\frac{9}{548}a^{3}-\frac{9}{548}a^{2}-\frac{457}{2192}a+\frac{457}{2192}$, $\frac{1}{37264}a^{14}-\frac{3}{37264}a^{12}+\frac{285}{37264}a^{10}-\frac{3575}{37264}a^{8}+\frac{891}{37264}a^{6}-\frac{1265}{37264}a^{4}+\frac{167}{2192}a^{2}-\frac{10133}{37264}$, $\frac{1}{260848}a^{15}-\frac{27}{130424}a^{13}-\frac{1}{2192}a^{12}+\frac{8989}{260848}a^{11}-\frac{3}{548}a^{10}+\frac{9645}{130424}a^{9}+\frac{83}{2192}a^{8}-\frac{14137}{260848}a^{7}+\frac{109}{548}a^{6}+\frac{31625}{130424}a^{5}+\frac{169}{2192}a^{4}-\frac{4325}{15344}a^{3}-\frac{73}{274}a^{2}-\frac{7387}{130424}a-\frac{91}{2192}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Ideal class group: | $C_{2}$, which has order $2$ |
| |
Narrow class group: | $C_{2}$, which has order $2$ |
|
Unit group
Rank: | $7$ |
| |
Torsion generator: |
\( -1 \)
(order $2$)
|
| |
Fundamental units: |
$\frac{121}{18632}a^{14}-\frac{847}{9316}a^{12}-\frac{7931}{18632}a^{10}-\frac{5775}{9316}a^{8}-\frac{2819}{18632}a^{6}-\frac{24473}{9316}a^{4}-\frac{6753}{1096}a^{2}-\frac{16217}{9316}$, $\frac{1167}{130424}a^{15}-\frac{9665}{65212}a^{13}-\frac{28787}{32606}a^{11}-\frac{270211}{130424}a^{9}-\frac{191871}{130424}a^{7}-\frac{130103}{32606}a^{5}-\frac{67983}{3836}a^{3}-\frac{2169903}{130424}a$, $\frac{165}{18632}a^{14}+\frac{569}{4658}a^{12}+\frac{10407}{18632}a^{10}+\frac{6957}{9316}a^{8}+\frac{883}{18632}a^{6}+\frac{8532}{2329}a^{4}+\frac{9585}{1096}a^{2}+\frac{453}{9316}$, $\frac{1845}{260848}a^{15}+\frac{31151}{260848}a^{13}+\frac{188171}{260848}a^{11}+\frac{443757}{260848}a^{9}+\frac{302867}{260848}a^{7}+\frac{884617}{260848}a^{5}+\frac{228253}{15344}a^{3}+\frac{3261067}{260848}a$, $\frac{2585}{260848}a^{15}+\frac{39981}{260848}a^{13}+\frac{1}{548}a^{12}+\frac{219585}{260848}a^{11}+\frac{3}{137}a^{10}+\frac{463109}{260848}a^{9}+\frac{27}{274}a^{8}+\frac{327291}{260848}a^{7}+\frac{28}{137}a^{6}+\frac{1164663}{260848}a^{5}+\frac{105}{548}a^{4}+\frac{236315}{15344}a^{3}+\frac{9}{137}a^{2}+\frac{3256791}{260848}a+\frac{57}{137}$, $\frac{441}{37264}a^{14}+\frac{5511}{37264}a^{12}+\frac{21373}{37264}a^{10}+\frac{17515}{37264}a^{8}+\frac{3155}{37264}a^{6}+\frac{169021}{37264}a^{4}+\frac{13591}{2192}a^{2}+\frac{10065}{37264}$, $\frac{93}{65212}a^{15}+\frac{9}{18632}a^{14}+\frac{2237}{65212}a^{13}+\frac{37}{2329}a^{12}+\frac{36537}{130424}a^{11}+\frac{1783}{18632}a^{10}+\frac{116829}{130424}a^{9}+\frac{785}{9316}a^{8}+\frac{52569}{65212}a^{7}-\frac{7043}{18632}a^{6}+\frac{25427}{65212}a^{5}+\frac{1949}{9316}a^{4}+\frac{50075}{7672}a^{3}+\frac{2187}{1096}a^{2}+\frac{1491411}{130424}a-\frac{1477}{4658}$
|
| |
Regulator: | \( 97464.59011603185 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 97464.59011603185 \cdot 2}{2\cdot\sqrt{121029087867608368152576}}\cr\approx \mathstrut & 0.680520053472470 \end{aligned}\]
Galois group
$C_2^5:C_4$ (as 16T227):
A solvable group of order 128 |
The 26 conjugacy class representatives for $C_2^5:C_4$ |
Character table for $C_2^5:C_4$ |
Intermediate fields
\(\Q(\sqrt{2}) \), 4.4.18432.1, 4.2.1024.1, 4.2.18432.3, 8.0.536870912.1, 8.0.43486543872.9, 8.4.5435817984.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | ${\href{/padicField/5.4.0.1}{4} }^{4}$ | ${\href{/padicField/7.4.0.1}{4} }^{2}{,}\,{\href{/padicField/7.2.0.1}{2} }^{2}{,}\,{\href{/padicField/7.1.0.1}{1} }^{4}$ | ${\href{/padicField/11.8.0.1}{8} }^{2}$ | ${\href{/padicField/13.4.0.1}{4} }^{4}$ | ${\href{/padicField/17.2.0.1}{2} }^{8}$ | ${\href{/padicField/19.8.0.1}{8} }^{2}$ | ${\href{/padicField/23.4.0.1}{4} }^{2}{,}\,{\href{/padicField/23.2.0.1}{2} }^{4}$ | ${\href{/padicField/29.4.0.1}{4} }^{4}$ | ${\href{/padicField/31.2.0.1}{2} }^{8}$ | ${\href{/padicField/37.4.0.1}{4} }^{4}$ | ${\href{/padicField/41.2.0.1}{2} }^{4}{,}\,{\href{/padicField/41.1.0.1}{1} }^{8}$ | ${\href{/padicField/43.8.0.1}{8} }^{2}$ | ${\href{/padicField/47.2.0.1}{2} }^{4}{,}\,{\href{/padicField/47.1.0.1}{1} }^{8}$ | ${\href{/padicField/53.4.0.1}{4} }^{4}$ | ${\href{/padicField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.1.16.64l1.59 | $x^{16} + 4 x^{12} + 8 x^{10} + 16 x^{7} + 8 x^{6} + 16 x + 18$ | $16$ | $1$ | $64$ | 16T227 | $$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$$ |
\(3\)
| 3.8.2.8a1.2 | $x^{16} + 4 x^{13} + 2 x^{12} + 8 x^{10} + 8 x^{9} + 5 x^{8} + 8 x^{7} + 12 x^{6} + 12 x^{5} + 8 x^{4} + 8 x^{3} + 12 x^{2} + 8 x + 7$ | $2$ | $8$ | $8$ | $C_8\times C_2$ | $$[\ ]_{2}^{8}$$ |