Properties

Label 2.1.16.64l1.59
Base \(\Q_{2}\)
Degree \(16\)
e \(16\)
f \(1\)
c \(64\)
Galois group $C_2^5:C_4$ (as 16T227)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{16} + 4 x^{12} + 8 x^{10} + 16 x^{7} + 8 x^{6} + 16 x + 18\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $16$
Ramification index $e$: $16$
Residue field degree $f$: $1$
Discriminant exponent $c$: $64$
Discriminant root field: $\Q_{2}$
Root number: $-1$
$\Aut(K/\Q_{2})$: $C_2^2$
This field is not Galois over $\Q_{2}.$
Visible Artin slopes:$[3, \frac{7}{2}, 4, \frac{19}{4}]$
Visible Swan slopes:$[2,\frac{5}{2},3,\frac{15}{4}]$
Means:$\langle1, \frac{7}{4}, \frac{19}{8}, \frac{49}{16}\rangle$
Rams:$(2, 3, 5, 11)$
Jump set:$[1, 3, 7, 15, 31]$
Roots of unity:$2$

Intermediate fields

$\Q_{2}(\sqrt{2})$, 2.1.4.10a1.1, 2.1.4.11a1.13, 2.1.4.11a1.10, 2.1.8.29a1.1, 2.1.8.29a1.4, 2.1.8.26c1.4

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial: \( x^{16} + 4 x^{12} + 8 x^{10} + 16 x^{7} + 8 x^{6} + 16 x + 18 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^8 + 1$,$z^4 + 1$,$z^2 + 1$,$z + 1$
Associated inertia:$1$,$1$,$1$,$1$
Indices of inseparability:$[49, 38, 28, 16, 0]$

Invariants of the Galois closure

Galois degree: $128$
Galois group: $C_2^5:C_4$ (as 16T227)
Inertia group: $C_2\wr C_4$ (as 16T172)
Wild inertia group: $C_2\wr C_4$
Galois unramified degree: $2$
Galois tame degree: $1$
Galois Artin slopes: $[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]$
Galois Swan slopes: $[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]$
Galois mean slope: $4.28125$
Galois splitting model:$x^{16} + 16 x^{14} + 92 x^{12} + 208 x^{10} + 150 x^{8} + 432 x^{6} + 1788 x^{4} + 1648 x^{2} + 49$