Normalized defining polynomial
\( x^{16} - 8x^{14} + 68x^{12} - 296x^{10} + 690x^{8} - 936x^{6} + 1212x^{4} - 1256x^{2} + 529 \)
Invariants
Degree: | $16$ |
| |
Signature: | $[0, 8]$ |
| |
Discriminant: |
\(121029087867608368152576\)
\(\medspace = 2^{64}\cdot 3^{8}\)
|
| |
Root discriminant: | \(27.71\) |
| |
Galois root discriminant: | $2^{137/32}3^{1/2}\approx 33.677922740001875$ | ||
Ramified primes: |
\(2\), \(3\)
|
| |
Discriminant root field: | \(\Q\) | ||
$\Aut(K/\Q)$: | $C_2^2$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
Maximal CM subfield: | 4.0.18432.2 |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{16}a^{8}+\frac{1}{4}a^{6}+\frac{1}{8}a^{4}-\frac{1}{4}a^{2}-\frac{1}{16}$, $\frac{1}{16}a^{9}+\frac{1}{4}a^{7}+\frac{1}{8}a^{5}-\frac{1}{4}a^{3}-\frac{1}{16}a$, $\frac{1}{16}a^{10}+\frac{1}{8}a^{6}+\frac{1}{4}a^{4}-\frac{1}{16}a^{2}+\frac{1}{4}$, $\frac{1}{16}a^{11}+\frac{1}{8}a^{7}+\frac{1}{4}a^{5}-\frac{1}{16}a^{3}+\frac{1}{4}a$, $\frac{1}{9248}a^{12}-\frac{3}{4624}a^{10}-\frac{275}{9248}a^{8}-\frac{1}{2}a^{7}-\frac{871}{2312}a^{6}-\frac{1}{2}a^{5}+\frac{2093}{9248}a^{4}-\frac{1}{2}a^{3}+\frac{1383}{4624}a^{2}-\frac{1}{2}a-\frac{531}{9248}$, $\frac{1}{9248}a^{13}-\frac{3}{4624}a^{11}-\frac{275}{9248}a^{9}-\frac{871}{2312}a^{7}-\frac{1}{2}a^{6}+\frac{2093}{9248}a^{5}-\frac{1}{2}a^{4}+\frac{1383}{4624}a^{3}-\frac{1}{2}a^{2}-\frac{531}{9248}a-\frac{1}{2}$, $\frac{1}{9248}a^{14}+\frac{267}{9248}a^{10}+\frac{1}{136}a^{8}-\frac{1}{2}a^{7}+\frac{3153}{9248}a^{6}-\frac{1}{2}a^{5}+\frac{37}{1156}a^{4}-\frac{1}{2}a^{3}+\frac{231}{544}a^{2}-\frac{1}{2}a+\frac{793}{2312}$, $\frac{1}{212704}a^{15}-\frac{1}{26588}a^{13}+\frac{1471}{212704}a^{11}+\frac{1145}{53176}a^{9}-\frac{33}{544}a^{7}-\frac{1}{2}a^{6}+\frac{931}{6647}a^{5}-\frac{1}{2}a^{4}-\frac{93341}{212704}a^{3}-\frac{1}{2}a^{2}+\frac{9369}{53176}a-\frac{1}{2}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Ideal class group: | $C_{2}$, which has order $2$ |
| |
Narrow class group: | $C_{2}$, which has order $2$ |
|
Unit group
Rank: | $7$ |
| |
Torsion generator: |
\( -1 \)
(order $2$)
|
| |
Fundamental units: |
$\frac{4}{289}a^{14}-\frac{28}{289}a^{12}+\frac{3881}{4624}a^{10}-\frac{14925}{4624}a^{8}+\frac{14023}{2312}a^{6}-\frac{14011}{2312}a^{4}+\frac{46491}{4624}a^{2}-\frac{35087}{4624}$, $\frac{105}{4624}a^{14}+\frac{763}{4624}a^{12}-\frac{6603}{4624}a^{10}+\frac{26373}{4624}a^{8}-\frac{54273}{4624}a^{6}+\frac{61923}{4624}a^{4}-\frac{82695}{4624}a^{2}+\frac{56537}{4624}$, $\frac{743}{106352}a^{15}-\frac{2811}{53176}a^{13}-\frac{7}{1156}a^{12}+\frac{23721}{53176}a^{11}+\frac{21}{578}a^{10}-\frac{97613}{53176}a^{9}-\frac{387}{1156}a^{8}+\frac{17031}{4624}a^{7}+\frac{317}{289}a^{6}-\frac{200961}{53176}a^{5}-\frac{1935}{1156}a^{4}+\frac{135199}{26588}a^{3}+\frac{723}{578}a^{2}-\frac{321267}{53176}a-\frac{3219}{1156}$, $\frac{1425}{106352}a^{15}-\frac{105}{9248}a^{14}-\frac{20385}{212704}a^{13}+\frac{379}{4624}a^{12}+\frac{88183}{106352}a^{11}-\frac{6573}{9248}a^{10}-\frac{692421}{212704}a^{9}+\frac{13007}{4624}a^{8}+\frac{29743}{4624}a^{7}-\frac{53037}{9248}a^{6}-\frac{1447749}{212704}a^{5}+\frac{28619}{4624}a^{4}+\frac{1068863}{106352}a^{3}-\frac{80341}{9248}a^{2}-\frac{1731757}{212704}a+\frac{32775}{4624}$, $\frac{1425}{106352}a^{15}+\frac{105}{9248}a^{14}-\frac{20385}{212704}a^{13}-\frac{379}{4624}a^{12}+\frac{88183}{106352}a^{11}+\frac{6573}{9248}a^{10}-\frac{692421}{212704}a^{9}-\frac{13007}{4624}a^{8}+\frac{29743}{4624}a^{7}+\frac{53037}{9248}a^{6}-\frac{1447749}{212704}a^{5}-\frac{28619}{4624}a^{4}+\frac{1068863}{106352}a^{3}+\frac{80341}{9248}a^{2}-\frac{1731757}{212704}a-\frac{32775}{4624}$, $\frac{271}{26588}a^{15}-\frac{105}{9248}a^{14}+\frac{14929}{212704}a^{13}+\frac{89}{1156}a^{12}-\frac{16289}{26588}a^{11}-\frac{6297}{9248}a^{10}+\frac{492481}{212704}a^{9}+\frac{5909}{2312}a^{8}-\frac{4975}{1156}a^{7}-\frac{45365}{9248}a^{6}+\frac{867725}{212704}a^{5}+\frac{6391}{1156}a^{4}-\frac{42093}{6647}a^{3}-\frac{82729}{9248}a^{2}+\frac{61649}{12512}a+\frac{14691}{2312}$, $\frac{3817}{212704}a^{15}+\frac{65}{4624}a^{14}+\frac{26925}{212704}a^{13}-\frac{445}{4624}a^{12}-\frac{235659}{212704}a^{11}+\frac{3841}{4624}a^{10}+\frac{913011}{212704}a^{9}-\frac{7263}{2312}a^{8}-\frac{80295}{9248}a^{7}+\frac{24793}{4624}a^{6}+\frac{1961493}{212704}a^{5}-\frac{24915}{4624}a^{4}-\frac{3058455}{212704}a^{3}+\frac{35885}{4624}a^{2}+\frac{2008047}{212704}a-\frac{5487}{1156}$
|
| |
Regulator: | \( 77795.8702455577 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 77795.8702455577 \cdot 2}{2\cdot\sqrt{121029087867608368152576}}\cr\approx \mathstrut & 0.543188554083253 \end{aligned}\]
Galois group
$C_2^5:C_4$ (as 16T227):
A solvable group of order 128 |
The 26 conjugacy class representatives for $C_2^5:C_4$ |
Character table for $C_2^5:C_4$ |
Intermediate fields
\(\Q(\sqrt{2}) \), 4.2.1024.1, 4.0.18432.2, 4.2.18432.3, 8.0.536870912.1, 8.4.43486543872.1, 8.0.5435817984.7 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | ${\href{/padicField/5.4.0.1}{4} }^{4}$ | ${\href{/padicField/7.4.0.1}{4} }^{2}{,}\,{\href{/padicField/7.2.0.1}{2} }^{4}$ | ${\href{/padicField/11.8.0.1}{8} }^{2}$ | ${\href{/padicField/13.4.0.1}{4} }^{4}$ | ${\href{/padicField/17.2.0.1}{2} }^{8}$ | ${\href{/padicField/19.8.0.1}{8} }^{2}$ | ${\href{/padicField/23.4.0.1}{4} }^{2}{,}\,{\href{/padicField/23.2.0.1}{2} }^{2}{,}\,{\href{/padicField/23.1.0.1}{1} }^{4}$ | ${\href{/padicField/29.4.0.1}{4} }^{4}$ | ${\href{/padicField/31.2.0.1}{2} }^{4}{,}\,{\href{/padicField/31.1.0.1}{1} }^{8}$ | ${\href{/padicField/37.4.0.1}{4} }^{4}$ | ${\href{/padicField/41.2.0.1}{2} }^{4}{,}\,{\href{/padicField/41.1.0.1}{1} }^{8}$ | ${\href{/padicField/43.8.0.1}{8} }^{2}$ | ${\href{/padicField/47.2.0.1}{2} }^{8}$ | ${\href{/padicField/53.4.0.1}{4} }^{4}$ | ${\href{/padicField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.1.16.64l1.94 | $x^{16} + 8 x^{14} + 4 x^{12} + 16 x^{11} + 8 x^{10} + 16 x^{9} + 8 x^{6} + 16 x^{5} + 16 x + 18$ | $16$ | $1$ | $64$ | 16T227 | $$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$$ |
\(3\)
| 3.8.2.8a1.2 | $x^{16} + 4 x^{13} + 2 x^{12} + 8 x^{10} + 8 x^{9} + 5 x^{8} + 8 x^{7} + 12 x^{6} + 12 x^{5} + 8 x^{4} + 8 x^{3} + 12 x^{2} + 8 x + 7$ | $2$ | $8$ | $8$ | $C_8\times C_2$ | $$[\ ]_{2}^{8}$$ |