Properties

Label 16.4.484...304.15
Degree $16$
Signature $[4, 6]$
Discriminant $4.841\times 10^{23}$
Root discriminant \(30.22\)
Ramified primes $2,3$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $C_2^5:C_4$ (as 16T259)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Normalized defining polynomial

Copy content comment:Define the number field
 
Copy content sage:x = polygen(QQ); K.<a> = NumberField(x^16 - 16*x^14 - 16*x^13 + 108*x^12 + 288*x^11 - 208*x^10 - 1840*x^9 - 2710*x^8 + 2048*x^7 + 14352*x^6 + 24688*x^5 + 23124*x^4 + 13024*x^3 + 4112*x^2 + 592*x - 47)
 
Copy content gp:K = bnfinit(y^16 - 16*y^14 - 16*y^13 + 108*y^12 + 288*y^11 - 208*y^10 - 1840*y^9 - 2710*y^8 + 2048*y^7 + 14352*y^6 + 24688*y^5 + 23124*y^4 + 13024*y^3 + 4112*y^2 + 592*y - 47, 1)
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^16 - 16*x^14 - 16*x^13 + 108*x^12 + 288*x^11 - 208*x^10 - 1840*x^9 - 2710*x^8 + 2048*x^7 + 14352*x^6 + 24688*x^5 + 23124*x^4 + 13024*x^3 + 4112*x^2 + 592*x - 47);
 
Copy content oscar:Qx, x = polynomial_ring(QQ); K, a = number_field(x^16 - 16*x^14 - 16*x^13 + 108*x^12 + 288*x^11 - 208*x^10 - 1840*x^9 - 2710*x^8 + 2048*x^7 + 14352*x^6 + 24688*x^5 + 23124*x^4 + 13024*x^3 + 4112*x^2 + 592*x - 47)
 

\( x^{16} - 16 x^{14} - 16 x^{13} + 108 x^{12} + 288 x^{11} - 208 x^{10} - 1840 x^{9} - 2710 x^{8} + \cdots - 47 \) Copy content Toggle raw display

Copy content comment:Defining polynomial
 
Copy content sage:K.defining_polynomial()
 
Copy content gp:K.pol
 
Copy content magma:DefiningPolynomial(K);
 
Copy content oscar:defining_polynomial(K)
 

Invariants

Degree:  $16$
Copy content comment:Degree over Q
 
Copy content sage:K.degree()
 
Copy content gp:poldegree(K.pol)
 
Copy content magma:Degree(K);
 
Copy content oscar:degree(K)
 
Signature:  $[4, 6]$
Copy content comment:Signature
 
Copy content sage:K.signature()
 
Copy content gp:K.sign
 
Copy content magma:Signature(K);
 
Copy content oscar:signature(K)
 
Discriminant:   \(484116351470433472610304\) \(\medspace = 2^{66}\cdot 3^{8}\) Copy content Toggle raw display
Copy content comment:Discriminant
 
Copy content sage:K.disc()
 
Copy content gp:K.disc
 
Copy content magma:OK := Integers(K); Discriminant(OK);
 
Copy content oscar:OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(30.22\)
Copy content sage:(K.disc().abs())^(1./K.degree())
 
Copy content gp:abs(K.disc)^(1/poldegree(K.pol))
 
Copy content magma:Abs(Discriminant(OK))^(1/Degree(K));
 
Copy content oscar:(1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{137/32}3^{1/2}\approx 33.677922740001875$
Ramified primes:   \(2\), \(3\) Copy content Toggle raw display
Copy content comment:Ramified primes
 
Copy content sage:K.disc().support()
 
Copy content gp:factor(abs(K.disc))[,1]~
 
Copy content magma:PrimeDivisors(Discriminant(OK));
 
Copy content oscar:prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\Aut(K/\Q)$:   $C_2^2$
Copy content comment:Autmorphisms
 
Copy content sage:K.automorphisms()
 
Copy content magma:Automorphisms(K);
 
Copy content oscar:automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.
This field has no CM subfields.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2}a^{8}-\frac{1}{2}$, $\frac{1}{4}a^{9}-\frac{1}{4}a^{8}-\frac{1}{2}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{4}a+\frac{1}{4}$, $\frac{1}{4}a^{10}-\frac{1}{4}a^{8}+\frac{1}{4}a^{2}-\frac{1}{4}$, $\frac{1}{4}a^{11}-\frac{1}{4}a^{8}-\frac{1}{2}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{4}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a+\frac{1}{4}$, $\frac{1}{4}a^{12}-\frac{1}{4}a^{8}+\frac{1}{4}a^{4}-\frac{1}{4}$, $\frac{1}{20}a^{13}-\frac{1}{10}a^{12}+\frac{1}{20}a^{10}-\frac{1}{20}a^{9}-\frac{3}{20}a^{8}-\frac{2}{5}a^{7}+\frac{1}{5}a^{6}-\frac{7}{20}a^{5}+\frac{1}{10}a^{4}+\frac{2}{5}a^{3}+\frac{9}{20}a^{2}-\frac{1}{20}a-\frac{3}{20}$, $\frac{1}{100}a^{14}+\frac{1}{50}a^{13}+\frac{3}{25}a^{12}+\frac{3}{50}a^{11}+\frac{2}{25}a^{10}-\frac{1}{50}a^{9}+\frac{1}{20}a^{8}-\frac{7}{25}a^{7}+\frac{29}{100}a^{6}+\frac{17}{50}a^{5}+\frac{4}{25}a^{4}-\frac{7}{50}a^{3}-\frac{1}{5}a^{2}-\frac{1}{50}a-\frac{47}{100}$, $\frac{1}{56\cdots 00}a^{15}-\frac{29\cdots 56}{14\cdots 25}a^{14}-\frac{19\cdots 47}{28\cdots 25}a^{13}-\frac{16\cdots 14}{14\cdots 25}a^{12}-\frac{30\cdots 23}{56\cdots 00}a^{11}+\frac{12\cdots 42}{28\cdots 25}a^{10}-\frac{39\cdots 43}{56\cdots 00}a^{9}-\frac{13\cdots 33}{56\cdots 00}a^{8}-\frac{19\cdots 93}{56\cdots 00}a^{7}-\frac{55\cdots 27}{56\cdots 50}a^{6}-\frac{98\cdots 59}{28\cdots 50}a^{5}-\frac{13\cdots 73}{56\cdots 50}a^{4}-\frac{24\cdots 81}{56\cdots 00}a^{3}-\frac{98\cdots 91}{28\cdots 50}a^{2}-\frac{43\cdots 49}{11\cdots 00}a+\frac{14\cdots 97}{56\cdots 00}$ Copy content Toggle raw display

Copy content comment:Integral basis
 
Copy content sage:K.integral_basis()
 
Copy content gp:K.zk
 
Copy content magma:IntegralBasis(K);
 
Copy content oscar:basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Ideal class group:  Trivial group, which has order $1$ (assuming GRH)
Copy content comment:Class group
 
Copy content sage:K.class_group().invariants()
 
Copy content gp:K.clgp
 
Copy content magma:ClassGroup(K);
 
Copy content oscar:class_group(K)
 
Narrow class group:  $C_{2}$, which has order $2$ (assuming GRH)
Copy content comment:Narrow class group
 
Copy content sage:K.narrow_class_group().invariants()
 
Copy content gp:bnfnarrow(K)
 
Copy content magma:NarrowClassGroup(K);
 

Unit group

Copy content comment:Unit group
 
Copy content sage:UK = K.unit_group()
 
Copy content magma:UK, fUK := UnitGroup(K);
 
Copy content oscar:UK, fUK = unit_group(OK)
 
Rank:  $9$
Copy content comment:Unit rank
 
Copy content sage:UK.rank()
 
Copy content gp:K.fu
 
Copy content magma:UnitRank(K);
 
Copy content oscar:rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
Copy content comment:Generator for roots of unity
 
Copy content sage:UK.torsion_generator()
 
Copy content gp:K.tu[2]
 
Copy content magma:K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Copy content oscar:torsion_units_generator(OK)
 
Fundamental units:   $\frac{47\cdots 64}{14\cdots 25}a^{15}-\frac{10\cdots 47}{28\cdots 50}a^{14}-\frac{14\cdots 32}{28\cdots 25}a^{13}+\frac{30\cdots 89}{56\cdots 00}a^{12}+\frac{10\cdots 81}{28\cdots 50}a^{11}+\frac{65\cdots 43}{11\cdots 00}a^{10}-\frac{39\cdots 29}{28\cdots 50}a^{9}-\frac{13\cdots 49}{28\cdots 50}a^{8}-\frac{53\cdots 02}{14\cdots 25}a^{7}+\frac{66\cdots 93}{56\cdots 50}a^{6}+\frac{51\cdots 98}{14\cdots 25}a^{5}+\frac{48\cdots 69}{11\cdots 00}a^{4}+\frac{73\cdots 07}{28\cdots 50}a^{3}+\frac{38\cdots 83}{56\cdots 00}a^{2}-\frac{77\cdots 47}{56\cdots 50}a-\frac{29\cdots 59}{28\cdots 50}$, $\frac{10\cdots 88}{14\cdots 25}a^{15}-\frac{25\cdots 23}{56\cdots 00}a^{14}-\frac{31\cdots 24}{28\cdots 25}a^{13}-\frac{71\cdots 78}{14\cdots 25}a^{12}+\frac{11\cdots 76}{14\cdots 25}a^{11}+\frac{92\cdots 03}{56\cdots 50}a^{10}-\frac{33\cdots 84}{14\cdots 25}a^{9}-\frac{67\cdots 41}{56\cdots 00}a^{8}-\frac{18\cdots 59}{14\cdots 25}a^{7}+\frac{25\cdots 77}{11\cdots 00}a^{6}+\frac{12\cdots 91}{14\cdots 25}a^{5}+\frac{36\cdots 12}{28\cdots 25}a^{4}+\frac{13\cdots 22}{14\cdots 25}a^{3}+\frac{87\cdots 93}{28\cdots 50}a^{2}+\frac{33\cdots 18}{28\cdots 25}a-\frac{15\cdots 81}{56\cdots 00}$, $\frac{13\cdots 87}{16\cdots 50}a^{15}+\frac{88\cdots 13}{16\cdots 50}a^{14}+\frac{21\cdots 68}{16\cdots 25}a^{13}+\frac{13\cdots 19}{33\cdots 00}a^{12}-\frac{15\cdots 99}{16\cdots 50}a^{11}-\frac{28\cdots 58}{16\cdots 25}a^{10}+\frac{26\cdots 83}{82\cdots 25}a^{9}+\frac{44\cdots 67}{33\cdots 00}a^{8}+\frac{19\cdots 41}{16\cdots 50}a^{7}-\frac{96\cdots 87}{33\cdots 50}a^{6}-\frac{83\cdots 42}{82\cdots 25}a^{5}-\frac{80\cdots 21}{66\cdots 00}a^{4}-\frac{11\cdots 03}{16\cdots 50}a^{3}-\frac{14\cdots 58}{82\cdots 25}a^{2}+\frac{15\cdots 29}{16\cdots 25}a+\frac{58\cdots 47}{33\cdots 00}$, $\frac{97\cdots 37}{56\cdots 00}a^{15}+\frac{60\cdots 29}{28\cdots 50}a^{14}+\frac{70\cdots 71}{28\cdots 25}a^{13}-\frac{19\cdots 63}{56\cdots 00}a^{12}-\frac{10\cdots 29}{56\cdots 00}a^{11}-\frac{30\cdots 09}{11\cdots 00}a^{10}+\frac{19\cdots 63}{28\cdots 50}a^{9}+\frac{64\cdots 23}{28\cdots 50}a^{8}+\frac{10\cdots 31}{56\cdots 00}a^{7}-\frac{30\cdots 13}{56\cdots 50}a^{6}-\frac{24\cdots 51}{14\cdots 25}a^{5}-\frac{24\cdots 59}{11\cdots 00}a^{4}-\frac{95\cdots 33}{56\cdots 00}a^{3}-\frac{50\cdots 41}{56\cdots 00}a^{2}-\frac{37\cdots 89}{11\cdots 10}a-\frac{15\cdots 27}{28\cdots 50}$, $\frac{12\cdots 37}{56\cdots 00}a^{15}-\frac{52\cdots 72}{14\cdots 25}a^{14}-\frac{36\cdots 61}{11\cdots 00}a^{13}+\frac{36\cdots 32}{14\cdots 25}a^{12}+\frac{70\cdots 37}{28\cdots 50}a^{11}+\frac{47\cdots 69}{28\cdots 25}a^{10}-\frac{34\cdots 83}{28\cdots 50}a^{9}-\frac{68\cdots 73}{28\cdots 50}a^{8}+\frac{24\cdots 09}{56\cdots 00}a^{7}+\frac{26\cdots 18}{28\cdots 25}a^{6}+\frac{94\cdots 59}{56\cdots 00}a^{5}+\frac{18\cdots 92}{28\cdots 25}a^{4}-\frac{11\cdots 11}{28\cdots 50}a^{3}-\frac{11\cdots 46}{14\cdots 25}a^{2}+\frac{20\cdots 71}{56\cdots 50}a-\frac{13\cdots 93}{28\cdots 50}$, $\frac{16\cdots 61}{56\cdots 00}a^{15}-\frac{19\cdots 51}{56\cdots 00}a^{14}+\frac{61\cdots 77}{11\cdots 00}a^{13}+\frac{52\cdots 11}{56\cdots 00}a^{12}-\frac{10\cdots 81}{28\cdots 50}a^{11}-\frac{13\cdots 07}{11\cdots 00}a^{10}+\frac{10\cdots 89}{28\cdots 50}a^{9}+\frac{40\cdots 63}{56\cdots 00}a^{8}+\frac{64\cdots 43}{56\cdots 00}a^{7}-\frac{68\cdots 83}{11\cdots 00}a^{6}-\frac{32\cdots 87}{56\cdots 00}a^{5}-\frac{11\cdots 37}{11\cdots 00}a^{4}-\frac{23\cdots 87}{28\cdots 50}a^{3}-\frac{20\cdots 23}{56\cdots 00}a^{2}-\frac{56\cdots 47}{11\cdots 10}a+\frac{23\cdots 63}{56\cdots 00}$, $\frac{50\cdots 67}{28\cdots 50}a^{15}+\frac{25\cdots 91}{56\cdots 00}a^{14}+\frac{17\cdots 51}{56\cdots 50}a^{13}+\frac{92\cdots 79}{56\cdots 00}a^{12}-\frac{67\cdots 09}{28\cdots 50}a^{11}-\frac{24\cdots 51}{56\cdots 50}a^{10}+\frac{22\cdots 31}{28\cdots 50}a^{9}+\frac{48\cdots 93}{14\cdots 25}a^{8}+\frac{73\cdots 81}{28\cdots 50}a^{7}-\frac{89\cdots 49}{11\cdots 00}a^{6}-\frac{71\cdots 69}{28\cdots 50}a^{5}-\frac{30\cdots 41}{11\cdots 00}a^{4}-\frac{22\cdots 23}{28\cdots 50}a^{3}+\frac{71\cdots 19}{28\cdots 50}a^{2}+\frac{17\cdots 53}{56\cdots 50}a+\frac{10\cdots 88}{14\cdots 25}$, $\frac{33\cdots 39}{56\cdots 00}a^{15}+\frac{10\cdots 21}{56\cdots 00}a^{14}+\frac{53\cdots 23}{56\cdots 50}a^{13}+\frac{37\cdots 29}{56\cdots 00}a^{12}-\frac{93\cdots 67}{14\cdots 25}a^{11}-\frac{85\cdots 53}{56\cdots 50}a^{10}+\frac{97\cdots 07}{56\cdots 00}a^{9}+\frac{14\cdots 53}{14\cdots 25}a^{8}+\frac{73\cdots 97}{56\cdots 00}a^{7}-\frac{19\cdots 51}{11\cdots 00}a^{6}-\frac{23\cdots 29}{28\cdots 50}a^{5}-\frac{13\cdots 39}{11\cdots 00}a^{4}-\frac{13\cdots 89}{14\cdots 25}a^{3}-\frac{11\cdots 51}{28\cdots 50}a^{2}-\frac{76\cdots 53}{11\cdots 00}a-\frac{19\cdots 57}{14\cdots 25}$, $\frac{88\cdots 31}{28\cdots 25}a^{15}+\frac{12\cdots 19}{22\cdots 20}a^{14}-\frac{29\cdots 19}{56\cdots 50}a^{13}-\frac{61\cdots 77}{11\cdots 00}a^{12}+\frac{10\cdots 56}{28\cdots 25}a^{11}+\frac{26\cdots 77}{28\cdots 25}a^{10}-\frac{41\cdots 27}{56\cdots 50}a^{9}-\frac{34\cdots 01}{56\cdots 50}a^{8}-\frac{47\cdots 13}{56\cdots 05}a^{7}+\frac{84\cdots 99}{11\cdots 00}a^{6}+\frac{26\cdots 61}{56\cdots 50}a^{5}+\frac{85\cdots 51}{11\cdots 00}a^{4}+\frac{18\cdots 63}{28\cdots 25}a^{3}+\frac{10\cdots 33}{28\cdots 25}a^{2}+\frac{75\cdots 99}{56\cdots 50}a+\frac{14\cdots 13}{56\cdots 50}$ Copy content Toggle raw display (assuming GRH)
Copy content comment:Fundamental units
 
Copy content sage:UK.fundamental_units()
 
Copy content gp:K.fu
 
Copy content magma:[K|fUK(g): g in Generators(UK)];
 
Copy content oscar:[K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 705835.1154494614 \) (assuming GRH)
Copy content comment:Regulator
 
Copy content sage:K.regulator()
 
Copy content gp:K.reg
 
Copy content magma:Regulator(K);
 
Copy content oscar:regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{6}\cdot 705835.1154494614 \cdot 1}{2\cdot\sqrt{484116351470433472610304}}\cr\approx \mathstrut & 0.499341408734770 \end{aligned}\] (assuming GRH)

Copy content comment:Analytic class number formula
 
Copy content sage:# self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K.<a> = NumberField(x^16 - 16*x^14 - 16*x^13 + 108*x^12 + 288*x^11 - 208*x^10 - 1840*x^9 - 2710*x^8 + 2048*x^7 + 14352*x^6 + 24688*x^5 + 23124*x^4 + 13024*x^3 + 4112*x^2 + 592*x - 47) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
Copy content gp:\\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^16 - 16*x^14 - 16*x^13 + 108*x^12 + 288*x^11 - 208*x^10 - 1840*x^9 - 2710*x^8 + 2048*x^7 + 14352*x^6 + 24688*x^5 + 23124*x^4 + 13024*x^3 + 4112*x^2 + 592*x - 47, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
Copy content magma:/* self-contained Magma code snippet to compute the analytic class number formula */ Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^16 - 16*x^14 - 16*x^13 + 108*x^12 + 288*x^11 - 208*x^10 - 1840*x^9 - 2710*x^8 + 2048*x^7 + 14352*x^6 + 24688*x^5 + 23124*x^4 + 13024*x^3 + 4112*x^2 + 592*x - 47); OK := Integers(K); DK := Discriminant(OK); UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK); r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK); hK := #clK; wK := #TorsionSubgroup(UK); 2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
Copy content oscar:# self-contained Oscar code snippet to compute the analytic class number formula Qx, x = PolynomialRing(QQ); K, a = NumberField(x^16 - 16*x^14 - 16*x^13 + 108*x^12 + 288*x^11 - 208*x^10 - 1840*x^9 - 2710*x^8 + 2048*x^7 + 14352*x^6 + 24688*x^5 + 23124*x^4 + 13024*x^3 + 4112*x^2 + 592*x - 47); OK = ring_of_integers(K); DK = discriminant(OK); UK, fUK = unit_group(OK); clK, fclK = class_group(OK); r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); hK = order(clK); wK = torsion_units_order(K); 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2^5:C_4$ (as 16T259):

Copy content comment:Galois group
 
Copy content sage:K.galois_group(type='pari')
 
Copy content gp:polgalois(K.pol)
 
Copy content magma:G = GaloisGroup(K);
 
Copy content oscar:G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 128
The 26 conjugacy class representatives for $C_2^5:C_4$
Character table for $C_2^5:C_4$

Intermediate fields

\(\Q(\sqrt{2}) \), \(\Q(\zeta_{16})^+\), 8.6.86973087744.1, 8.2.1073741824.1, 8.4.21743271936.4

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Copy content comment:Intermediate fields
 
Copy content sage:K.subfields()[1:-1]
 
Copy content gp:L = nfsubfields(K); L[2..length(b)]
 
Copy content magma:L := Subfields(K); L[2..#L];
 
Copy content oscar:subfields(K)[2:end-1]
 

Sibling fields

Degree 16 siblings: 16.4.484116351470433472610304.5, 16.8.484116351470433472610304.3, 16.4.484116351470433472610304.1, 16.8.7564317991725523009536.4, 16.0.7564317991725523009536.7, 16.4.30257271966902092038144.11, 16.0.7564317991725523009536.17, 16.0.7564317991725523009536.12, 16.12.30257271966902092038144.2, 16.8.484116351470433472610304.45, 16.0.484116351470433472610304.303, 16.8.121029087867608368152576.38, 16.0.121029087867608368152576.155, 16.0.484116351470433472610304.214, 16.0.1891079497931380752384.21, 16.4.121029087867608368152576.57, 16.0.1891079497931380752384.29, 16.4.121029087867608368152576.73, 16.8.121029087867608368152576.36, 16.0.121029087867608368152576.97, 16.0.121029087867608368152576.179, 16.0.121029087867608368152576.182
Degree 32 siblings: deg 32, deg 32, deg 32, deg 32, deg 32, deg 32, deg 32, deg 32, deg 32, deg 32, deg 32, deg 32, deg 32, deg 32, deg 32, deg 32, deg 32, deg 32, deg 32, deg 32, deg 32, deg 32, deg 32, deg 32, deg 32, deg 32, deg 32, deg 32, deg 32, deg 32, deg 32, deg 32, deg 32, deg 32, deg 32, deg 32, deg 32
Arithmetically equivalent sibling: 16.4.484116351470433472610304.4
Minimal sibling: 16.8.121029087867608368152576.36

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R ${\href{/padicField/5.4.0.1}{4} }^{4}$ ${\href{/padicField/7.4.0.1}{4} }^{4}$ ${\href{/padicField/11.8.0.1}{8} }^{2}$ ${\href{/padicField/13.4.0.1}{4} }^{4}$ ${\href{/padicField/17.2.0.1}{2} }^{6}{,}\,{\href{/padicField/17.1.0.1}{1} }^{4}$ ${\href{/padicField/19.8.0.1}{8} }^{2}$ ${\href{/padicField/23.4.0.1}{4} }^{4}$ ${\href{/padicField/29.4.0.1}{4} }^{4}$ ${\href{/padicField/31.2.0.1}{2} }^{4}{,}\,{\href{/padicField/31.1.0.1}{1} }^{8}$ ${\href{/padicField/37.4.0.1}{4} }^{4}$ ${\href{/padicField/41.2.0.1}{2} }^{8}$ ${\href{/padicField/43.8.0.1}{8} }^{2}$ ${\href{/padicField/47.2.0.1}{2} }^{6}{,}\,{\href{/padicField/47.1.0.1}{1} }^{4}$ ${\href{/padicField/53.4.0.1}{4} }^{4}$ ${\href{/padicField/59.8.0.1}{8} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

Copy content comment:Frobenius cycle types
 
Copy content sage:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
Copy content gp:\\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
Copy content magma:// to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Magma: p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
Copy content oscar:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.1.16.66j1.880$x^{16} + 24 x^{12} + 16 x^{11} + 8 x^{10} + 16 x^{9} + 4 x^{8} + 8 x^{4} + 16 x^{3} + 2$$16$$1$$66$16T259$$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$$
\(3\) Copy content Toggle raw display 3.8.2.8a1.2$x^{16} + 4 x^{13} + 2 x^{12} + 8 x^{10} + 8 x^{9} + 5 x^{8} + 8 x^{7} + 12 x^{6} + 12 x^{5} + 8 x^{4} + 8 x^{3} + 12 x^{2} + 8 x + 7$$2$$8$$8$$C_8\times C_2$$$[\ ]_{2}^{8}$$

Spectrum of ring of integers

(0)(0)(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43)(47)(53)(59)