Normalized defining polynomial
\( x^{12} - x^{11} - 7 x^{10} + 15 x^{9} + 21 x^{8} - 60 x^{7} - 23 x^{6} + 163 x^{5} - 54 x^{4} + \cdots + 25 \)
Invariants
Degree: | $12$ |
| |
Signature: | $[0, 6]$ |
| |
Discriminant: |
\(668168000000000\)
\(\medspace = 2^{12}\cdot 5^{9}\cdot 17^{4}\)
|
| |
Root discriminant: | \(17.20\) |
| |
Galois root discriminant: | $2^{3/2}5^{3/4}17^{1/2}\approx 38.99392548461692$ | ||
Ramified primes: |
\(2\), \(5\), \(17\)
|
| |
Discriminant root field: | \(\Q(\sqrt{5}) \) | ||
$\Aut(K/\Q)$: | $C_4$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
Maximal CM subfield: | \(\Q(\zeta_{5})\) |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{905}a^{10}-\frac{46}{905}a^{9}-\frac{27}{905}a^{8}-\frac{74}{181}a^{7}-\frac{204}{905}a^{6}-\frac{81}{181}a^{5}+\frac{207}{905}a^{4}+\frac{173}{905}a^{3}+\frac{266}{905}a^{2}-\frac{3}{181}a-\frac{42}{181}$, $\frac{1}{34562855}a^{11}-\frac{59}{6912571}a^{10}-\frac{6825848}{34562855}a^{9}+\frac{9066308}{34562855}a^{8}+\frac{9670446}{34562855}a^{7}-\frac{8957074}{34562855}a^{6}-\frac{309818}{34562855}a^{5}-\frac{2520382}{6912571}a^{4}-\frac{7089141}{34562855}a^{3}-\frac{10301799}{34562855}a^{2}+\frac{2969648}{6912571}a-\frac{2092581}{6912571}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Ideal class group: | Trivial group, which has order $1$ |
| |
Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
Rank: | $5$ |
| |
Torsion generator: |
\( -\frac{17203}{6912571} a^{11} - \frac{60781}{34562855} a^{10} + \frac{980241}{34562855} a^{9} - \frac{1291793}{34562855} a^{8} - \frac{762920}{6912571} a^{7} + \frac{6473079}{34562855} a^{6} + \frac{512341}{6912571} a^{5} - \frac{18503542}{34562855} a^{4} + \frac{3767152}{34562855} a^{3} + \frac{29882134}{34562855} a^{2} - \frac{14506933}{6912571} a + \frac{7573735}{6912571} \)
(order $10$)
|
| |
Fundamental units: |
$\frac{39259}{34562855}a^{11}+\frac{219614}{34562855}a^{10}+\frac{6989}{34562855}a^{9}-\frac{1656836}{34562855}a^{8}+\frac{2182894}{34562855}a^{7}+\frac{8710578}{34562855}a^{6}-\frac{6758607}{34562855}a^{5}-\frac{16829992}{34562855}a^{4}+\frac{24452638}{34562855}a^{3}+\frac{44616373}{34562855}a^{2}-\frac{9764427}{6912571}a-\frac{1581401}{6912571}$, $\frac{307767}{34562855}a^{11}-\frac{736887}{34562855}a^{10}-\frac{830449}{34562855}a^{9}+\frac{899775}{6912571}a^{8}+\frac{619537}{34562855}a^{7}-\frac{2251784}{6912571}a^{6}-\frac{1050526}{34562855}a^{5}+\frac{30616256}{34562855}a^{4}-\frac{31876483}{34562855}a^{3}+\frac{602183}{6912571}a^{2}-\frac{316756}{6912571}a+\frac{1930762}{6912571}$, $\frac{132688}{34562855}a^{11}+\frac{1797792}{34562855}a^{10}-\frac{5384571}{34562855}a^{9}-\frac{768834}{6912571}a^{8}+\frac{31162078}{34562855}a^{7}-\frac{1121076}{6912571}a^{6}-\frac{73856059}{34562855}a^{5}+\frac{35527009}{34562855}a^{4}+\frac{154336913}{34562855}a^{3}-\frac{47550519}{6912571}a^{2}+\frac{28623417}{6912571}a-\frac{1429776}{6912571}$, $\frac{995111}{34562855}a^{11}-\frac{594584}{34562855}a^{10}-\frac{8142209}{34562855}a^{9}+\frac{11105131}{34562855}a^{8}+\frac{31592696}{34562855}a^{7}-\frac{46312088}{34562855}a^{6}-\frac{67557898}{34562855}a^{5}+\frac{126981442}{34562855}a^{4}+\frac{51937257}{34562855}a^{3}-\frac{205437453}{34562855}a^{2}+\frac{31945746}{6912571}a-\frac{7559833}{6912571}$, $\frac{140486}{6912571}a^{11}-\frac{1634697}{34562855}a^{10}-\frac{4033243}{34562855}a^{9}+\frac{12656229}{34562855}a^{8}+\frac{1624720}{6912571}a^{7}-\frac{47633137}{34562855}a^{6}-\frac{3315386}{6912571}a^{5}+\frac{114598191}{34562855}a^{4}-\frac{50569541}{34562855}a^{3}-\frac{137806972}{34562855}a^{2}+\frac{3241756}{6912571}a-\frac{3223637}{6912571}$
|
| |
Regulator: | \( 2014.8871293984223 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{6}\cdot 2014.8871293984223 \cdot 1}{10\cdot\sqrt{668168000000000}}\cr\approx \mathstrut & 0.479608748698512 \end{aligned}\]
Galois group
$C_4\times S_3$ (as 12T11):
A solvable group of order 24 |
The 12 conjugacy class representatives for $S_3 \times C_4$ |
Character table for $S_3 \times C_4$ |
Intermediate fields
\(\Q(\sqrt{5}) \), 3.1.680.1, \(\Q(\zeta_{5})\), 6.2.2312000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Galois closure: | deg 24 |
Degree 12 sibling: | 12.4.12358435328000000000.1 |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.12.0.1}{12} }$ | R | ${\href{/padicField/7.4.0.1}{4} }^{3}$ | ${\href{/padicField/11.2.0.1}{2} }^{4}{,}\,{\href{/padicField/11.1.0.1}{1} }^{4}$ | ${\href{/padicField/13.12.0.1}{12} }$ | R | ${\href{/padicField/19.6.0.1}{6} }^{2}$ | ${\href{/padicField/23.4.0.1}{4} }^{3}$ | ${\href{/padicField/29.6.0.1}{6} }^{2}$ | ${\href{/padicField/31.3.0.1}{3} }^{4}$ | ${\href{/padicField/37.4.0.1}{4} }^{3}$ | ${\href{/padicField/41.2.0.1}{2} }^{4}{,}\,{\href{/padicField/41.1.0.1}{1} }^{4}$ | ${\href{/padicField/43.4.0.1}{4} }^{3}$ | ${\href{/padicField/47.12.0.1}{12} }$ | ${\href{/padicField/53.12.0.1}{12} }$ | ${\href{/padicField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.4.1.0a1.1 | $x^{4} + x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ |
2.4.2.12a1.1 | $x^{8} + 2 x^{5} + 2 x^{4} + x^{2} + 2 x + 3$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $$[3]^{4}$$ | |
\(5\)
| 5.1.4.3a1.1 | $x^{4} + 5$ | $4$ | $1$ | $3$ | $C_4$ | $$[\ ]_{4}$$ |
5.1.4.3a1.1 | $x^{4} + 5$ | $4$ | $1$ | $3$ | $C_4$ | $$[\ ]_{4}$$ | |
5.1.4.3a1.1 | $x^{4} + 5$ | $4$ | $1$ | $3$ | $C_4$ | $$[\ ]_{4}$$ | |
\(17\)
| 17.4.1.0a1.1 | $x^{4} + 7 x^{2} + 10 x + 3$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ |
17.4.2.4a1.2 | $x^{8} + 14 x^{6} + 20 x^{5} + 55 x^{4} + 140 x^{3} + 142 x^{2} + 60 x + 26$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $$[\ ]_{2}^{4}$$ |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
1.680.2t1.b.a | $1$ | $ 2^{3} \cdot 5 \cdot 17 $ | \(\Q(\sqrt{-170}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
* | 1.5.2t1.a.a | $1$ | $ 5 $ | \(\Q(\sqrt{5}) \) | $C_2$ (as 2T1) | $1$ | $1$ |
1.136.2t1.b.a | $1$ | $ 2^{3} \cdot 17 $ | \(\Q(\sqrt{-34}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
* | 1.5.4t1.a.a | $1$ | $ 5 $ | \(\Q(\zeta_{5})\) | $C_4$ (as 4T1) | $0$ | $-1$ |
1.680.4t1.g.a | $1$ | $ 2^{3} \cdot 5 \cdot 17 $ | 4.4.2312000.1 | $C_4$ (as 4T1) | $0$ | $1$ | |
* | 1.5.4t1.a.b | $1$ | $ 5 $ | \(\Q(\zeta_{5})\) | $C_4$ (as 4T1) | $0$ | $-1$ |
1.680.4t1.g.b | $1$ | $ 2^{3} \cdot 5 \cdot 17 $ | 4.4.2312000.1 | $C_4$ (as 4T1) | $0$ | $1$ | |
* | 2.680.3t2.a.a | $2$ | $ 2^{3} \cdot 5 \cdot 17 $ | 3.1.680.1 | $S_3$ (as 3T2) | $1$ | $0$ |
* | 2.680.6t3.b.a | $2$ | $ 2^{3} \cdot 5 \cdot 17 $ | 6.0.62886400.1 | $D_{6}$ (as 6T3) | $1$ | $0$ |
* | 2.3400.12t11.b.a | $2$ | $ 2^{3} \cdot 5^{2} \cdot 17 $ | 12.0.668168000000000.1 | $S_3 \times C_4$ (as 12T11) | $0$ | $0$ |
* | 2.3400.12t11.b.b | $2$ | $ 2^{3} \cdot 5^{2} \cdot 17 $ | 12.0.668168000000000.1 | $S_3 \times C_4$ (as 12T11) | $0$ | $0$ |