Show commands:
Magma
magma: G := TransitiveGroup(12, 11);
Group action invariants
Degree $n$: | $12$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $11$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $S_3 \times C_4$ | ||
CHM label: | $S(3)[x]C(4)$ | ||
Parity: | $-1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| magma: NilpotencyClass(G);
|
$\card{\Aut(F/K)}$: | $4$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,5)(2,10)(4,8)(7,11), (1,5,9)(2,6,10)(3,7,11)(4,8,12), (1,4,7,10)(2,5,8,11)(3,6,9,12) | magma: Generators(G);
|
Low degree resolvents
|G/N| Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_4$ x 2, $C_2^2$ $6$: $S_3$ $8$: $C_4\times C_2$ $12$: $D_{6}$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $S_3$
Degree 4: $C_4$
Degree 6: $D_{6}$
Low degree siblings
12T11, 24T12Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{12}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{6}$ | $1$ | $2$ | $6$ | $( 1, 7)( 2, 8)( 3, 9)( 4,10)( 5,11)( 6,12)$ |
2B | $2^{6}$ | $3$ | $2$ | $6$ | $( 1,11)( 2, 4)( 3, 9)( 5, 7)( 6,12)( 8,10)$ |
2C | $2^{4},1^{4}$ | $3$ | $2$ | $4$ | $( 2, 6)( 3,11)( 5, 9)( 8,12)$ |
3A | $3^{4}$ | $2$ | $3$ | $8$ | $( 1, 5, 9)( 2, 6,10)( 3, 7,11)( 4, 8,12)$ |
4A1 | $4^{3}$ | $1$ | $4$ | $9$ | $( 1,10, 7, 4)( 2,11, 8, 5)( 3,12, 9, 6)$ |
4A-1 | $4^{3}$ | $1$ | $4$ | $9$ | $( 1, 4, 7,10)( 2, 5, 8,11)( 3, 6, 9,12)$ |
4B1 | $4^{3}$ | $3$ | $4$ | $9$ | $( 1,12, 7, 6)( 2, 5, 8,11)( 3,10, 9, 4)$ |
4B-1 | $4^{3}$ | $3$ | $4$ | $9$ | $( 1,10, 7, 4)( 2, 3, 8, 9)( 5, 6,11,12)$ |
6A | $6^{2}$ | $2$ | $6$ | $10$ | $( 1, 3, 5, 7, 9,11)( 2, 4, 6, 8,10,12)$ |
12A1 | $12$ | $2$ | $12$ | $11$ | $( 1, 8, 3,10, 5,12, 7, 2, 9, 4,11, 6)$ |
12A-1 | $12$ | $2$ | $12$ | $11$ | $( 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12)$ |
magma: ConjugacyClasses(G);
Malle's constant $a(G)$: $1/4$
Group invariants
Order: | $24=2^{3} \cdot 3$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | ||
Label: | 24.5 | magma: IdentifyGroup(G);
| |
Character table: |
1A | 2A | 2B | 2C | 3A | 4A1 | 4A-1 | 4B1 | 4B-1 | 6A | 12A1 | 12A-1 | ||
Size | 1 | 1 | 3 | 3 | 2 | 1 | 1 | 3 | 3 | 2 | 2 | 2 | |
2 P | 1A | 1A | 1A | 1A | 3A | 2A | 2A | 2A | 2A | 3A | 6A | 6A | |
3 P | 1A | 2A | 2B | 2C | 1A | 4A-1 | 4A1 | 4B-1 | 4B1 | 2A | 4A1 | 4A-1 | |
Type | |||||||||||||
24.5.1a | R | ||||||||||||
24.5.1b | R | ||||||||||||
24.5.1c | R | ||||||||||||
24.5.1d | R | ||||||||||||
24.5.1e1 | C | ||||||||||||
24.5.1e2 | C | ||||||||||||
24.5.1f1 | C | ||||||||||||
24.5.1f2 | C | ||||||||||||
24.5.2a | R | ||||||||||||
24.5.2b | R | ||||||||||||
24.5.2c1 | C | ||||||||||||
24.5.2c2 | C |
magma: CharacterTable(G);