Basic invariants
Dimension: | $2$ |
Group: | $S_3 \times C_4$ |
Conductor: | \(3400\)\(\medspace = 2^{3} \cdot 5^{2} \cdot 17 \) |
Artin stem field: | Galois closure of 12.0.668168000000000.1 |
Galois orbit size: | $2$ |
Smallest permutation container: | $S_3 \times C_4$ |
Parity: | odd |
Determinant: | 1.136.2t1.b.a |
Projective image: | $S_3$ |
Projective stem field: | Galois closure of 3.1.680.1 |
Defining polynomial
$f(x)$ | $=$ |
\( x^{12} - x^{11} - 7 x^{10} + 15 x^{9} + 21 x^{8} - 60 x^{7} - 23 x^{6} + 163 x^{5} - 54 x^{4} + \cdots + 25 \)
|
The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$:
\( x^{4} + 3x^{2} + 19x + 5 \)
Roots:
$r_{ 1 }$ | $=$ |
\( 15 a^{3} + 18 a^{2} + 10 a + 4 + \left(4 a^{3} + 19 a^{2} + 10 a + 1\right)\cdot 23 + \left(16 a^{3} + 21 a^{2} + 15 a + 14\right)\cdot 23^{2} + \left(14 a^{3} + 16 a^{2} + 2 a + 21\right)\cdot 23^{3} + \left(17 a^{3} + 17 a^{2} + 21 a + 16\right)\cdot 23^{4} + \left(4 a^{3} + 13 a^{2} + 4 a + 18\right)\cdot 23^{5} +O(23^{6})\)
|
$r_{ 2 }$ | $=$ |
\( 6 a^{2} + 8 a + 8 + \left(17 a^{3} + 13 a^{2} + 6\right)\cdot 23 + \left(4 a^{3} + 15 a^{2} + 6 a + 2\right)\cdot 23^{2} + \left(11 a^{3} + 3 a^{2} + 15\right)\cdot 23^{3} + \left(a^{3} + 13 a^{2} + 16 a + 15\right)\cdot 23^{4} + \left(19 a^{3} + 14 a^{2} + 16\right)\cdot 23^{5} +O(23^{6})\)
|
$r_{ 3 }$ | $=$ |
\( 2 a^{3} + 10 a^{2} + 17 a + 19 + \left(18 a^{3} + 17 a^{2} + 6 a + 5\right)\cdot 23 + \left(6 a^{3} + 14 a^{2} + 12 a + 5\right)\cdot 23^{2} + \left(13 a^{3} + 9 a^{2} + 18 a + 1\right)\cdot 23^{3} + \left(9 a^{3} + 20 a^{2} + 6 a + 7\right)\cdot 23^{4} + \left(19 a^{2} + 19 a + 20\right)\cdot 23^{5} +O(23^{6})\)
|
$r_{ 4 }$ | $=$ |
\( 10 a^{3} + 6 a^{2} + 3 a + 12 + \left(13 a^{3} + 15 a^{2} + 9 a + 22\right)\cdot 23 + \left(20 a^{3} + 8 a^{2} + 22 a + 2\right)\cdot 23^{2} + \left(17 a^{3} + 16 a^{2} + 21 a + 2\right)\cdot 23^{3} + \left(15 a^{3} + 5 a^{2} + 9 a + 10\right)\cdot 23^{4} + \left(17 a^{3} + 4 a^{2} + 9 a + 1\right)\cdot 23^{5} +O(23^{6})\)
|
$r_{ 5 }$ | $=$ |
\( 16 a^{3} + 3 a + 8 + \left(22 a^{3} + 5 a^{2} + 21 a + 18\right)\cdot 23 + \left(19 a^{3} + 4 a^{2} + 14 a + 10\right)\cdot 23^{2} + \left(2 a^{3} + 2 a^{2} + 21 a + 2\right)\cdot 23^{3} + \left(21 a^{3} + 14 a^{2} + 17 a + 1\right)\cdot 23^{4} + \left(12 a^{3} + 14 a^{2} + 9 a + 18\right)\cdot 23^{5} +O(23^{6})\)
|
$r_{ 6 }$ | $=$ |
\( 22 a^{3} + 10 a^{2} + 10 a + 15 + \left(19 a^{3} + 18 a^{2} + 18 a\right)\cdot 23 + \left(6 a^{3} + 21 a^{2} + 5 a + 5\right)\cdot 23^{2} + \left(20 a^{3} + 13 a^{2} + 17 a + 13\right)\cdot 23^{3} + \left(3 a^{3} + 21 a^{2} + 21 a + 8\right)\cdot 23^{4} + \left(16 a^{3} + 11 a^{2} + 18 a + 17\right)\cdot 23^{5} +O(23^{6})\)
|
$r_{ 7 }$ | $=$ |
\( 17 a^{3} + 5 a^{2} + 3 a + 13 + \left(18 a^{3} + a^{2} + 17 a + 1\right)\cdot 23 + \left(8 a^{3} + a^{2} + 22 a + 4\right)\cdot 23^{2} + \left(9 a^{3} + 15 a^{2} + a + 6\right)\cdot 23^{3} + \left(19 a^{3} + 15 a^{2} + 15 a + 10\right)\cdot 23^{4} + \left(20 a^{3} + 5 a^{2} + 13 a + 11\right)\cdot 23^{5} +O(23^{6})\)
|
$r_{ 8 }$ | $=$ |
\( 18 a^{3} + 7 a^{2} + 1 + \left(14 a^{3} + 8 a^{2} + 9 a + 14\right)\cdot 23 + \left(21 a^{3} + 18 a^{2} + 19 a + 9\right)\cdot 23^{2} + \left(11 a^{3} + 17 a^{2} + 6 a + 11\right)\cdot 23^{3} + \left(22 a^{3} + 5 a^{2} + 11 a + 8\right)\cdot 23^{4} + \left(14 a^{3} + 7 a^{2} + 7 a + 13\right)\cdot 23^{5} +O(23^{6})\)
|
$r_{ 9 }$ | $=$ |
\( a^{3} + 17 a^{2} + 6 a + 8 + \left(16 a^{3} + 18 a^{2} + 5 a + 14\right)\cdot 23 + \left(10 a^{3} + 2 a^{2} + 15 a + 19\right)\cdot 23^{2} + \left(16 a^{3} + 2 a^{2} + 21 a + 9\right)\cdot 23^{3} + \left(13 a^{3} + 19 a^{2} + 7 a + 18\right)\cdot 23^{4} + \left(3 a^{3} + 13 a^{2} + 16 a + 7\right)\cdot 23^{5} +O(23^{6})\)
|
$r_{ 10 }$ | $=$ |
\( 20 a^{3} + 5 a^{2} + 5 a + 2 + \left(14 a^{3} + 13 a^{2} + 15 a + 18\right)\cdot 23 + \left(3 a^{3} + 8 a^{2} + 15 a + 19\right)\cdot 23^{2} + \left(11 a^{3} + 7 a^{2} + 21 a + 16\right)\cdot 23^{3} + \left(13 a^{3} + 15 a^{2} + 4 a + 3\right)\cdot 23^{4} + \left(16 a^{3} + 6 a^{2} + 2 a + 21\right)\cdot 23^{5} +O(23^{6})\)
|
$r_{ 11 }$ | $=$ |
\( 14 a^{3} + 17 a^{2} + 2 a + 17 + \left(5 a^{3} + 11 a^{2} + 18 a + 2\right)\cdot 23 + \left(16 a^{3} + 7 a^{2} + a + 16\right)\cdot 23^{2} + \left(10 a^{3} + 10 a^{2} + 18 a\right)\cdot 23^{3} + \left(7 a^{3} + 22 a^{2} + 16 a + 17\right)\cdot 23^{4} + \left(a^{3} + 11 a^{2} + 3 a + 18\right)\cdot 23^{5} +O(23^{6})\)
|
$r_{ 12 }$ | $=$ |
\( 3 a^{3} + 14 a^{2} + 2 a + 9 + \left(18 a^{3} + 18 a^{2} + 7 a + 9\right)\cdot 23 + \left(a^{3} + 12 a^{2} + 9 a + 5\right)\cdot 23^{2} + \left(21 a^{3} + 22 a^{2} + 8 a + 14\right)\cdot 23^{3} + \left(14 a^{3} + 12 a^{2} + 11 a + 20\right)\cdot 23^{4} + \left(9 a^{3} + 13 a^{2} + 8 a + 18\right)\cdot 23^{5} +O(23^{6})\)
|
Generators of the action on the roots $r_1, \ldots, r_{ 12 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 12 }$ | Character value | Complex conjugation |
$1$ | $1$ | $()$ | $2$ | |
$1$ | $2$ | $(1,11)(2,7)(3,8)(4,5)(6,10)(9,12)$ | $-2$ | |
$3$ | $2$ | $(3,10)(4,9)(5,12)(6,8)$ | $0$ | |
$3$ | $2$ | $(1,9)(2,8)(3,7)(4,5)(6,10)(11,12)$ | $0$ | ✓ |
$2$ | $3$ | $(1,5,12)(2,10,3)(4,9,11)(6,8,7)$ | $-1$ | |
$1$ | $4$ | $(1,2,11,7)(3,9,8,12)(4,6,5,10)$ | $2 \zeta_{4}$ | |
$1$ | $4$ | $(1,7,11,2)(3,12,8,9)(4,10,5,6)$ | $-2 \zeta_{4}$ | |
$3$ | $4$ | $(1,6,11,10)(2,5,7,4)(3,12,8,9)$ | $0$ | |
$3$ | $4$ | $(1,10,11,6)(2,4,7,5)(3,9,8,12)$ | $0$ | |
$2$ | $6$ | $(1,9,5,11,12,4)(2,8,10,7,3,6)$ | $1$ | |
$2$ | $12$ | $(1,6,9,2,5,8,11,10,12,7,4,3)$ | $\zeta_{4}$ | |
$2$ | $12$ | $(1,10,9,7,5,3,11,6,12,2,4,8)$ | $-\zeta_{4}$ |