Basic invariants
Dimension: | $1$ |
Group: | $C_4$ |
Conductor: | \(5\) |
Artin field: | Galois closure of \(\Q(\zeta_{5})\) |
Galois orbit size: | $2$ |
Smallest permutation container: | $C_4$ |
Parity: | odd |
Dirichlet character: | \(\chi_{5}(2,\cdot)\) |
Projective image: | $C_1$ |
Projective field: | Galois closure of \(\Q\) |
Defining polynomial
$f(x)$ | $=$ | \( x^{4} - x^{3} + x^{2} - x + 1 \) . |
The roots of $f$ are computed in $\Q_{ 11 }$ to precision 5.
Roots:
$r_{ 1 }$ | $=$ | \( 2 + 10\cdot 11 + 4\cdot 11^{2} + 9\cdot 11^{3} + 11^{4} +O(11^{5})\) |
$r_{ 2 }$ | $=$ | \( 6 + 8\cdot 11 + 5\cdot 11^{2} + 9\cdot 11^{3} + 3\cdot 11^{4} +O(11^{5})\) |
$r_{ 3 }$ | $=$ | \( 7 + 3\cdot 11 + 11^{2} + 5\cdot 11^{3} + 8\cdot 11^{4} +O(11^{5})\) |
$r_{ 4 }$ | $=$ | \( 8 + 10\cdot 11 + 9\cdot 11^{2} + 8\cdot 11^{3} + 7\cdot 11^{4} +O(11^{5})\) |
Generators of the action on the roots $r_1, \ldots, r_{ 4 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 4 }$ | Character value | Complex conjugation |
$1$ | $1$ | $()$ | $1$ | |
$1$ | $2$ | $(1,2)(3,4)$ | $-1$ | ✓ |
$1$ | $4$ | $(1,4,2,3)$ | $-\zeta_{4}$ | |
$1$ | $4$ | $(1,3,2,4)$ | $\zeta_{4}$ |