Normalized defining polynomial
\( x^{11} + 99 x^{9} - 352 x^{8} + 7326 x^{7} - 11418 x^{6} + 643544 x^{5} - 2510904 x^{4} + 1577004 x^{3} + \cdots + 1242792 \)
Invariants
| Degree: | $11$ |
| |
| Signature: | $[3, 4]$ |
| |
| Discriminant: |
\(14403248684783362069365325824\)
\(\medspace = 2^{16}\cdot 3^{14}\cdot 11^{16}\)
|
| |
| Root discriminant: | \(362.96\) |
| |
| Galois root discriminant: | $2^{11/6}3^{3/2}11^{84/55}\approx 721.2085287457858$ | ||
| Ramified primes: |
\(2\), \(3\), \(11\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_1$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2}a^{4}-\frac{1}{2}a^{3}$, $\frac{1}{12}a^{5}-\frac{1}{4}a^{4}-\frac{1}{6}a^{3}-\frac{1}{6}a$, $\frac{1}{12}a^{6}+\frac{1}{12}a^{4}-\frac{1}{2}a^{3}-\frac{1}{6}a^{2}-\frac{1}{2}a$, $\frac{1}{12}a^{7}-\frac{1}{4}a^{4}-\frac{1}{2}a^{2}+\frac{1}{6}a$, $\frac{1}{144}a^{8}-\frac{1}{36}a^{7}-\frac{1}{48}a^{6}-\frac{1}{24}a^{5}-\frac{1}{4}a^{4}+\frac{5}{12}a^{3}+\frac{17}{36}a^{2}+\frac{5}{18}a+\frac{5}{12}$, $\frac{1}{144}a^{9}+\frac{5}{144}a^{7}-\frac{1}{24}a^{6}-\frac{1}{4}a^{4}-\frac{7}{36}a^{3}-\frac{17}{36}a-\frac{1}{3}$, $\frac{1}{20\cdots 92}a^{10}+\frac{86\cdots 23}{34\cdots 32}a^{9}-\frac{86\cdots 01}{23\cdots 88}a^{8}-\frac{42\cdots 71}{52\cdots 48}a^{7}+\frac{23\cdots 55}{34\cdots 32}a^{6}-\frac{16\cdots 37}{86\cdots 08}a^{5}+\frac{97\cdots 51}{52\cdots 48}a^{4}-\frac{38\cdots 97}{43\cdots 54}a^{3}+\frac{45\cdots 71}{17\cdots 16}a^{2}+\frac{44\cdots 49}{26\cdots 24}a+\frac{65\cdots 75}{86\cdots 08}$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $2$ |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | Trivial group, which has order $1$ (assuming GRH) |
|
Unit group
| Rank: | $6$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{24\cdots 95}{17\cdots 16}a^{10}-\frac{10\cdots 31}{57\cdots 72}a^{9}+\frac{24\cdots 53}{17\cdots 16}a^{8}-\frac{39\cdots 53}{57\cdots 72}a^{7}+\frac{54\cdots 23}{48\cdots 06}a^{6}-\frac{22\cdots 88}{72\cdots 09}a^{5}+\frac{41\cdots 05}{43\cdots 54}a^{4}-\frac{69\cdots 71}{14\cdots 18}a^{3}+\frac{35\cdots 77}{43\cdots 54}a^{2}-\frac{27\cdots 83}{48\cdots 06}a+\frac{33\cdots 60}{24\cdots 03}$, $\frac{91\cdots 45}{86\cdots 08}a^{10}-\frac{46\cdots 37}{34\cdots 32}a^{9}+\frac{36\cdots 07}{34\cdots 32}a^{8}-\frac{17\cdots 61}{34\cdots 32}a^{7}+\frac{32\cdots 73}{38\cdots 48}a^{6}-\frac{43\cdots 37}{19\cdots 24}a^{5}+\frac{61\cdots 43}{86\cdots 08}a^{4}-\frac{15\cdots 41}{43\cdots 54}a^{3}+\frac{53\cdots 05}{86\cdots 08}a^{2}-\frac{36\cdots 59}{86\cdots 08}a+\frac{30\cdots 99}{28\cdots 36}$, $\frac{17\cdots 95}{52\cdots 48}a^{10}-\frac{10\cdots 31}{34\cdots 32}a^{9}+\frac{11\cdots 17}{34\cdots 32}a^{8}-\frac{15\cdots 05}{10\cdots 96}a^{7}+\frac{86\cdots 97}{34\cdots 32}a^{6}-\frac{10\cdots 65}{17\cdots 16}a^{5}+\frac{55\cdots 71}{26\cdots 24}a^{4}-\frac{73\cdots 07}{72\cdots 09}a^{3}+\frac{83\cdots 19}{86\cdots 08}a^{2}+\frac{40\cdots 81}{26\cdots 24}a-\frac{18\cdots 79}{86\cdots 08}$, $\frac{22\cdots 09}{52\cdots 48}a^{10}+\frac{37\cdots 15}{38\cdots 48}a^{9}+\frac{98\cdots 82}{21\cdots 27}a^{8}-\frac{55\cdots 67}{10\cdots 96}a^{7}+\frac{13\cdots 23}{43\cdots 54}a^{6}+\frac{79\cdots 89}{43\cdots 54}a^{5}+\frac{74\cdots 61}{26\cdots 24}a^{4}-\frac{40\cdots 59}{86\cdots 08}a^{3}-\frac{14\cdots 09}{43\cdots 54}a^{2}+\frac{17\cdots 87}{26\cdots 24}a-\frac{10\cdots 99}{43\cdots 54}$, $\frac{23\cdots 83}{77\cdots 96}a^{10}+\frac{12\cdots 45}{34\cdots 32}a^{9}+\frac{34\cdots 97}{69\cdots 64}a^{8}+\frac{29\cdots 41}{14\cdots 18}a^{7}+\frac{35\cdots 75}{38\cdots 48}a^{6}-\frac{27\cdots 63}{28\cdots 36}a^{5}+\frac{82\cdots 31}{57\cdots 72}a^{4}+\frac{22\cdots 79}{43\cdots 54}a^{3}-\frac{39\cdots 73}{17\cdots 16}a^{2}+\frac{44\cdots 27}{28\cdots 36}a-\frac{32\cdots 61}{96\cdots 12}$, $\frac{94\cdots 53}{52\cdots 48}a^{10}+\frac{29\cdots 45}{17\cdots 16}a^{9}+\frac{73\cdots 37}{34\cdots 32}a^{8}+\frac{13\cdots 07}{52\cdots 48}a^{7}+\frac{40\cdots 11}{34\cdots 32}a^{6}+\frac{78\cdots 51}{17\cdots 16}a^{5}-\frac{27\cdots 71}{65\cdots 81}a^{4}+\frac{12\cdots 95}{28\cdots 36}a^{3}+\frac{44\cdots 03}{86\cdots 08}a^{2}-\frac{99\cdots 55}{13\cdots 62}a+\frac{21\cdots 41}{86\cdots 08}$
|
| |
| Regulator: | \( 157372407442 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{3}\cdot(2\pi)^{4}\cdot 157372407442 \cdot 1}{2\cdot\sqrt{14403248684783362069365325824}}\cr\approx \mathstrut & 8.17481294052927 \end{aligned}\] (assuming GRH)
Galois group
$\PSL(2,11)$ (as 11T5):
| A non-solvable group of order 660 |
| The 8 conjugacy class representatives for $\PSL(2,11)$ |
| Character table for $\PSL(2,11)$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Degree 12 sibling: | 12.0.74666441181916948967589849071616.2 |
| Arithmetically equivalent sibling: | 11.3.14403248684783362069365325824.4 |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/padicField/5.5.0.1}{5} }^{2}{,}\,{\href{/padicField/5.1.0.1}{1} }$ | ${\href{/padicField/7.5.0.1}{5} }^{2}{,}\,{\href{/padicField/7.1.0.1}{1} }$ | R | ${\href{/padicField/13.3.0.1}{3} }^{3}{,}\,{\href{/padicField/13.1.0.1}{1} }^{2}$ | ${\href{/padicField/17.5.0.1}{5} }^{2}{,}\,{\href{/padicField/17.1.0.1}{1} }$ | ${\href{/padicField/19.11.0.1}{11} }$ | ${\href{/padicField/23.11.0.1}{11} }$ | ${\href{/padicField/29.5.0.1}{5} }^{2}{,}\,{\href{/padicField/29.1.0.1}{1} }$ | ${\href{/padicField/31.6.0.1}{6} }{,}\,{\href{/padicField/31.3.0.1}{3} }{,}\,{\href{/padicField/31.2.0.1}{2} }$ | ${\href{/padicField/37.5.0.1}{5} }^{2}{,}\,{\href{/padicField/37.1.0.1}{1} }$ | ${\href{/padicField/41.5.0.1}{5} }^{2}{,}\,{\href{/padicField/41.1.0.1}{1} }$ | ${\href{/padicField/43.5.0.1}{5} }^{2}{,}\,{\href{/padicField/43.1.0.1}{1} }$ | ${\href{/padicField/47.2.0.1}{2} }^{4}{,}\,{\href{/padicField/47.1.0.1}{1} }^{3}$ | ${\href{/padicField/53.5.0.1}{5} }^{2}{,}\,{\href{/padicField/53.1.0.1}{1} }$ | ${\href{/padicField/59.3.0.1}{3} }^{3}{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.2.3a1.2 | $x^{2} + 10$ | $2$ | $1$ | $3$ | $C_2$ | $$[3]$$ |
| 2.1.3.2a1.1 | $x^{3} + 2$ | $3$ | $1$ | $2$ | $S_3$ | $$[\ ]_{3}^{2}$$ | |
| 2.1.6.11a1.1 | $x^{6} + 2$ | $6$ | $1$ | $11$ | $D_{6}$ | $$[3]_{3}^{2}$$ | |
|
\(3\)
| 3.1.2.1a1.2 | $x^{2} + 6$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
| 3.1.3.4a2.3 | $x^{3} + 6 x^{2} + 21$ | $3$ | $1$ | $4$ | $C_3$ | $$[2]$$ | |
| 3.1.6.9a1.7 | $x^{6} + 3 x^{4} + 6$ | $6$ | $1$ | $9$ | $C_6$ | $$[2]_{2}$$ | |
|
\(11\)
| 11.1.11.16a2.1 | $x^{11} + 22 x^{6} + 11$ | $11$ | $1$ | $16$ | $C_{11}:C_5$ | $$[\frac{8}{5}]_{5}$$ |